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Abstract

Several recent works investigate the effect of retirement on cognitive perfor-
mance, arriving at different conclusions. The key ingredient of the various ap-
proaches is how they handle the endogeneity of the retirement decision. In order to
examine this issue more deeply, I replicate the results of previous works using three
waves from the Survey of Health, Ageing and Retirement in Europe (SHARE). I
draw attention to potential biases inherent in the standard instrumental variable
identification strategies and assess their magnitudes. Based on the lessons learned,
I propose a new instrument that utilizes the panel structure of the data, enabling
the comparison of individual cognitive paths. I show that if retirement has any
adverse effect on cognitive performance it must be really small in magnitude.

∗This paper is improved upon my Master thesis at Central European University. I thank Gábor Kézdi
for advice, Gábor Békés, Zsombor Cseres-Gergely, Sergey Lychagin, Gábor Rappai, Anthony Strittmat-
ter, Péter Zsohár and participants of the Hungarian Economics Association/Pécs University of Sciences,
Faculty of Business and Economics’ 2013 summer workshop for doctoral students and of the Venice In-
ternational University Summer Institute on Ageing for helpful discussion and comments. The analysis
was carried out in Stata with the help of the ivreg2 package of Baum et al. (2014) and the tables were
produced by the estout package of (Jann, 2005, 2007). The corresponding codes and the actual version of
the paper can be found on GitHub. First draft: May 24, 2012.
†divenyi_janos@phd.ceu.edu

https://github.com/divenyijanos/effect-retirement-on-cognition
mailto:divenyi\protect _janos@phd.ceu.edu


1 Introduction

In developed countries, increased life expectancy, together with the parallel decline in
the average retirement age, has increased the average spell of retirement in the last
decades (the expected number of years in retirement for OECD countries increased
from 10.6 years in 1970 to 18.2 years in 2015 for men, and from 14.6 to 22.7 years for
women1). Even if eligibility ages have been raised recently, people often spend 15-
20 years of their lives as pensioners, which makes this phase of their life more and
more relevant. Beside the individual level, the period of retirement is also of growing
importance at the social level as well, because the proportion of retirees is increasing
in the ageing population. As a natural consequence, various fields of research began
to deal with the quality of the life of retirees. In this agenda, a particular aspect –
namely the cognitive performance of old age individuals – has captured the attention
of economists as it highly influences the decisions they make forming their consump-
tion or saving behavior which affects the work of the economy to an increasing extent.
Therefore, the age profile of cognitive abilities at the later stages of life is fundamental
for many fields from marketing to pension and health policy.

It has been widely documented that individual cognitive performance tends to decline
in older ages. According to Schaie (1989) cognitive abilities are relatively stable until
the age of 50 but begin to decline afterwards. However, there is large heterogeneity
in the progress of cognitive decay, raising the natural question of what are the driving
forces behind and whether there is a way to decelerate it in order to maintain cognitive
abilities as long as possible. A popular hypothesis, which is often called as use-it-
or-lose-it hypothesis (see for example Rohwedder and Willis, 2010), suggests that the
natural decay of cognitive abilities in older ages can be mitigated by intellectually en-
gaging activities. Thus, retirement which goes together with the cease of cognitively
demanding tasks at work, might accelerate the natural declining process, having a neg-
ative causal effect on cognition. In this respect, the notion of retirement simply refers to
not working, and thus incorporates a broader definition than usual (for example, peo-
ple on disability benefit or who are unemployed could also be regarded as retirees).

Many papers have been investigating recently the effect of retirement on cognitive
abilities in developed countries (e.g. Rohwedder and Willis, 2010; Mazzonna and Per-
acchi, 2012; Bonsang et al., 2012), yet the results they have delivered are ambiguous.
The inconclusive outcome is most likely due to the difficulty of identification and the
resulting variety in the identification strategies.

In this paper I investigate the effect of retirement and cognition by two methods: First,
I replicate the estimations of previous papers uncovering the factors behind the differ-
ences. I show that they fail to disentangle the true effect highlighting how sensitive

1OECD, https://stats.oecd.org/index.aspx?queryid=54758
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their results are to minor modifications of the set of controls. Second, I apply a novel
identification strategy which aims to handle the problems which the current literature
suffers from. Applying a difference-in-differences approach I can account for all time-
invariant individual heterogeneity, and get a smaller result than any other previous
work. This result is robust to choosing different time-periods or including more con-
trols.

My analysis is based on the first, second and the fourth waves of the Survey of Health,
Ageing and Retirement in Europe (SHARE)2 which collects rich multidisciplinary data
about the socio-economic status, health (including cognitive functioning), and other
relevant characteristics (like social networks) of people aged 50 or over across 10 devel-
oped European countries. The survey is harmonized not only across European coun-
tries but also with other surveys such as the Health and Retirement Study (HRS), that
serves similar purposes in the United States and is used by some of the replicated pa-
pers (e.g. Bonsang et al., 2012). To my knowledge, this paper is the first which makes
use of a large longitudinal cross-country sample to go after the effect of retirement on
cognition.

The main challenge in uncovering the true effect is the endogeneity of retirement: a
simple comparison of cognitive abilities of retirees and employees is likely to lead to
biased estimates. Ideally, we would like to compare individuals from the same cohort
and country, with the same age and education, one of them randomly assigned to be
retired for a period of time while the other is working. As retirement is mainly an
individual choice, this comparison is clearly impossible. For example, one can conve-
niently argue that the decay of cognitive abilities may induce the individual to retire,
that is there is reverse causality going from cognition to retirement. This may result
in overestimating the retirement effect on cognition in a simple comparison, even if
we control for age. The standard solution is employing instrumental variables. Public
policy rules (like official retirement age) seem to be good candidates for being relevant
and exogenous instruments, as they clearly affect whether an individual retires but
they generally refer to everyone irrespective of their actual cognitive performance.

While replicating previous cross-sectional analyses I show that applying public policy
rule instruments in such settings can easily violate the exogeneity assumption: eligi-

2This paper uses data from SHARE wave 4 release 1.1.1, as of March 28th 2013(DOI:
10.6103/SHARE.w4.111) or SHARE wave 1 and 2 release 2.6.0, as of November 29 2013 (DOI:
10.6103/SHARE.w1.260 and 10.6103/SHARE.w2.260) or SHARELIFE release 1, as of November 24th
2010 (DOI: 10.6103/SHARE.w3.100). The SHARE data collection has been primarily funded by the Eu-
ropean Commission through the 5th Framework Programme (project QLK6-CT- 2001-00360 in the the-
matic programme Quality of Life), through the 6th Framework Programme (projects SHARE- I3, RII-CT-
2006-062193, COMPARE, CIT5- CT-2005-028857, and SHARELIFE, CIT4-CT-2006-028812) and through
the 7th Framework Programme (SHARE-PREP, No 211909, SHARE-LEAP, No 227822 and SHARE M4,
No 261982). Additional funding from the U.S. National Institute on Aging (U01 AG09740-13S2, P01
AG005842, P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553-01, IAG BSR06-11 and OGHA 04-
064) and the German Ministry of Education and Research as well as from various national sources is
gratefully acknowledged (see www.share-project.org for a full list of funding institutions).
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bility rules typically vary by country and gender, so not controlling for them properly
can wrongly attribute general differences to the effect of retirement. This explains the
sensitivity of cross-sectional results to alternative sets of controls.

Bonsang et al. (2012) use panel data from the HRS estimating a fixed-effect specification
that naturally controls for such general differences. However, their results cannot be
replicated on my sample. Also, their strategy uses an unbalanced panel over 10 years
that mixes together the effect of retirement with other factors: cohort, attrition and
learning effects could bias their results in an ambiguous way.

My strategy directly compares individual cognitive paths of employed and retired peo-
ple. This way I also control for all time-invariant individual characteristics that allows
for safely applying the standard public policy rules as instruments. Comparing cog-
nitive paths implies a balanced panel specification, making it easier to assess panel
concerns. I estimate the same relationship on different samples (comparing differ-
ent waves) that contain different cohorts and also might suffer from different attrition
rates, and my results are robust to these alternative specifications. Contrary to previ-
ous findings, my results suggest that retirement does not seem to cause serious harm
for cognition: only around 0.02 standard deviation yearly.

This paper is structured as follows. Section 2 gives a formal setup for the problem
and discusses the main challenges in the identification. Section 3 describes the data,
detailing the various cognitive measures. Section 4 contains the replications of the
previous results backed up by additional estimates that put them into context. Section
5 exhibits the results of my strategy. Section 6 concludes.

2 Model

A general way to model parametrically the relationship between cognitive perfor-
mance and retirement is the following:

Ci = α + f (Ri; β) + ui (1)

ui = X
′
i γ + εi (2)

where Ci denotes the cognitive performance of individual i, Ri is the number of years
the individual has spent in retirement (i.e. not working). I allow for the cognitive per-
formance to depend upon these years through an arbitrary function f with parameter
β. The term ui contains all factors associated with Ci except for Ri, for example: age.
Equation (2) makes this dependency explicit where Xi is the vector containing these
factors.
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Clearly, E[Ci|Ri] = α + f (Ri; β) + E[ui|Ri]. Assuming that we know f and have a good
measure for Ci, the parameter of interest (β) can be consistently estimated if E[ui|Ri] =

0. However, this is hardly the case. There are two sources which make the exogeneity
assumption dubious: omitted variable bias and reverse causality.

Omitted variable bias There are lots of factors which are associated with the cogni-
tive performance and also the years spent in retirement. These are factors in Xi which
are correlated with Ri. The most obvious candidate is age: older individuals are ex-
pected to have spent more years in retirement and they also have worse cognitive
skills due to age-related decline. Education is also incorporated in Xi: worse educated
individuals retire earlier and they also have worse cognition. One should take care of
these factors when estimating the effect of retirement on cognitive performance. The
main challenge here is that we do not know exactly what factors are in Xi.

Reverse causality One can conveniently argue that the decay of cognitive abilities
may induce the individual to retire, so there is reverse causality going from cognition
to retirement. That may result in overestimating the retirement effect on cognition in a
simple comparison, even if we control for all factors in Xi.

Most attempts trying to uncover β apply instrumental variables, as they might be able
to eliminate both problems. Good instrumental variables (let us denote them by the
vector Zi) satisfy two requirements: first, they are correlated with the possibly en-
dogenous retirement variable (Cov(Zi, Ri) 6= 0), and second, they are related to the
cognitive performance only through years of retirement (E[ui|Zi] = 0). If these two
assumptions hold, both omitted variable bias and reverse causality are resolved.

3 Data

Most papers which are after the effect of interest use the same sources of data provided
by three large longitudinal surveys: the Health and Retirement Study (HRS), the En-
glish Longitudinal Survey of Ageing (ELSA) and the Survey of Health, Ageing and
Retirement (SHARE).

Aiming to provide a multidisciplinary data about ageing, the United States of America
launched the Health and Retirement Study (HRS) in 1992, and since then the study has
collected detailed information about socio-economic status, health (including cognitive
functioning), and other relevant characteristics (like social networks) of people aged
50 or over. Respondents of the survey are visited biannually and put through in-depth
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interviews to collect rich panel micro data about ageing population. The English Lon-
gitudinal Survey of Ageing (ELSA) was designed according to the HRS with its first
wave launched in 2002. 2 years later Continental Europe also decided to set up an age-
ing database by establishing the Survey of Health, Ageing and Retirement in Europe
(SHARE), a cross-nationally comparable panel database of micro data. SHARE started
with 12 countries (Austria, Belgium, Denmark, France, Germany, Greece, Israel, Italy,
the Netherlands, Spain, Sweden and Switzerland) in 2004 with wave 1, three countries
(the Czech Republic, Ireland and Poland) joined in wave 2, and another four countries
(Estonia, Hungary, Portugal and Slovenia), joined in wave 4. The three surveys (HRS,
ELSA and SHARE) are carefully harmonized, and thus provide an excellent basis for
cross- country investigation of ageing population in developed countries.

What makes the surveys appropriate for this particular analysis is that they include a
battery of tests about cognitive abilities (memory, verbal fluency and numeracy). The
test of memory is done as follows: 10 simple words are read out by the interviewer and
the respondent should recall them once immediately after hearing and then at the end
of the cognitive functioning module. As a result, both immediate recall and delayed
recall scores range from 0 to 10. Often, the two variables are merged to a composite
one by adding them up, which is called total word recall. Verbal fluency is tested by
asking the respondent to name as many distinct animals as she can within one minute.
The length of this list provides a measure for verbal fluency. SHARE also consists of
several questions about individual numeracy skills. Respondents who answer the first
one correctly get a more difficult one, while those who failed get an easier one. The
last question requires the respondent to calculate compound interest. The number of
correct answers to these questions provides an objective measure of numeracy ranging
from 0 to 4. Finally, there is a test of orientation of four questions which examines
whether the respondent is aware of the date of the interview (day, month, year) and
the day of the week. This test may be used to detect individuals with serious cognitive
problems or progressed dementia.

Various measures of cognitive skills might grab its different aspects as argued in Maz-
zonna and Peracchi (2012). As most of the papers use the results on memory tests I
also focus on that measure for comparison purposes. To have a common unit I use
standardized scores to express scales in standard deviation.

Throughout the paper I make use of the first, second and fourth waves of SHARE. The
third wave of data collection (SHARELIFE) is omitted, as it is of different nature: it
focuses on people’s life histories instead of current characteristics.
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4 Replications

In this section I replicate the main results of the literature, specifically that of Rohwed-
der and Willis (2010), Mazzonna and Peracchi (2012), and Bonsang et al. (2012). I put
all of these results in my unified framework and show that their differing conclusions
actually fit in the broader picture. The ambiguity of their results stems from the dif-
ferences in their identification strategies that implies that their estimated "effects" of
retirement on cognitive performance measure different kinds of things.

The papers differ in three crucial aspect: first, what is their assumption about how
retirement should affect cognitive performance (i.e. what is their assumption for f ),
second, how they handle omitted variable bias (i.e. which factors they are control-
ling for from Xi), and third, what is their choice for instrumental variable to overcome
endogeneity. Besides the methodology, they also differ in the data they use for esti-
mation. However, considering the goal of uncovering a general relationship this fact
should be of secondary importance as far as the measurements are comparable across
the datasets.

The structural equation the papers try to estimate could be summarized as follows:

Si = α + f (Ri; β) + X∗
′

i γ∗ + ũi (3)

ũi = X̃
′
i γ̃ + εi (4)

where Si is a cognitive score, a measurement of cognitive performance. This formula-
tion helps to differentiate between factors which are controlled for (X∗i ) versus factors
which remain in the error term (X̃i). To get a clear causal effect equation (3) is estimated
by a 2SLS procedure where the first stage is

Ri = Z
′
iπ + X∗

′
i ρ + νi (5)

From now on let us assume that the cognitive measurements detailed in the previous
section describe well the actual cognitive skills. To be more precise, I assume that
Ci = Si + ei where ei is a classical measurement error in the dependent variable, i.e.
Cov(ei, Si) = Cov(ei, Ri) = 0. In this case our estimators remain consistent although
less precise.

All of the papers use various public policy rules to instrument retirement (such as
pension eligibility rules). Such rules are good candidates for instrument as they vary
across country and gender and are strongly correlated with employment status. The
crucial question is whether it also satisfies the exogeneity assumption. Formally, the
exogeneity assumption can be expressed as E [ũi|Zi] = 0. It essentially says that there is
no systematic difference in the cognitive performance of an eligible and a non-eligible
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individual in the sample (after controlled for some other features).

4.1 Rohwedder and Willis (2010)

The first serious attempt to uncover the causal relationship between retirement and
individual cognitive performance (Rohwedder and Willis, 2010) uses a simple setup:
they only include a dummy for not working on the right hand side on a restricted sam-
ple of people aged between 60 and 64. This is equivalent to estimating the average
effect of retirement on cognition conditional on the average duration of retirement the
sample, that is assuming that f (Ri; β) = β̃1(Ri > 0) where β̃ = βRi. Beside restricting
the sample on a narrow age-range they do not include anything in X∗i . To handle endo-
geneity they use public pension eligibility rules as instruments: whether the individual
is eligible for early or full benefits. See Table A1 for a summary of the methodologies.

Rohwedder and Willis (2010) estimate their model on the 2004 waves of SHARE, ELSA
and HRS, and find that retirement has a large adverse effect on cognition among 60-
64 years old, amounting to one-and-a-half standard deviation. Unfortunately, they do
not report the average duration of retirement in their sample which makes it hard to
convert this number to yearly average.

Using only the first wave of SHARE (and thus having a much smaller sample than
theirs, 4464 versus 8828 observations) I was able to replicate their main findings (see
the first column of Table 1). The pattern is the same: retirement seems to decrease
cognitive performance. However, my estimation is somewhat smaller, amounting to
only 1 standard deviation. Considering that the average duration of retirement in my
sample is 6.6 years, it could be translated to an average yearly decline of 0.15 standard
deviation (if I use the same number for conversion, the estimate of Rohwedder and
Willis (2010) corresponds to 0.23 standard deviation yearly decline).

In order to be able to interpret the previous result as causal effect it should be true
that E [ũi|Zi] = 0. Clearly, eligibility rules are not related to unobserved individual id-
iosyncrasies in cognition, as they generally refer to everyone. So using the instrument
indeed helps with the problems. However, there are other factors left in ũi which are
likely to be correlated with the instrument. For example, in most countries eligibility
rules differ for males and females: women tend to become eligible earlier. Women
also have higher memory scores than men in the same age, even before retirement (for
people below 55 the mean difference amounts to 0.19 standard deviation in my data).
Not controlling for gender is likely to lead to underestimated effects as women with
better scores are overrepresented in the eligible population. Moreover, people from
different countries might differ in their average education as well (e.g. because of dif-
ferent compulsory schooling laws affecting today’s pensioners). As different countries
also have different eligibility rules, ignoring schooling is also likely to undermine the
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Table 1: Comparing the methodology of Rohwedder and Willis (2010)
by two versions of the instrumental variable: 2SLS estimation

(1) (2)
Rohwedder and Willis (2010) Mazzonna and Peracchi (2012)

Retired −1.010*** −0.500***
(0.14) (0.13)

Constant 0.736*** 0.365***
(0.10) (0.097)

Observations 4,464 4,464
Weak IV F statistic 154.45 156.12

Notes: Both results are from the second stage estimation of Si = α + β1(Ri > 0) + ui
where the retirement dummy is instrumented by early and normal eligibility dummies.
The coefficient of interest in Rohwedder and Willis (2010) is –4.66*** on a sample of
8,828 observations which amounts to 1.5 standard deviation. The corresponding first
stage regressions are summarized in Table A2.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al.
(2002) suggest that an F below 10 should make us worry about the potential bias in the
IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

exogeneity of the instruments. Bingley and Martinello (2013) show that countries with
higher eligibility ages also tend to have better educated old age people, and thus the
effect of Rohwedder and Willis (2010) is overestimated. The violation of the exogeneity
assumption makes the causal interpretation of the results in the first column of Table 1
questionable.

4.2 Mazzonna and Peracchi (2012)

The paper of Mazzonna and Peracchi (2012) improves upon Rohwedder and Willis
(2010) along all of the three aspects: they allow for a yearly retirement effect instead
of including just a retired dummy, they control for a set of features (age, gender and
country), and they use a modified instrumental variable that has some variation within
the country-gender cells. They end up with an estimated yearly decline of around 0.04
standard deviation, an order of magnitude less than the first estimate. I replicate their
strategy by implementing their improvements one by one, to shed some light on what
causes the reasonable drop in the effect.

I start with the modified instrumental variable: as opposed to the eligibility rules that
were in effect at the time when the interviews were conducted, Mazzonna and Peracchi
(2012) consider also the changes that the rules might have had during the times. For
each individual they apply the eligibility rules that were in effect for the individual’s
cohort. This way they have some variation in the rules within country-gender cells.
Both instrumental variables reach the same level of relevance (see the first stage re-

8



gression results in Table A2 in the appendix). However, using the refined IV results in
a reasonable drop in the coefficient of interest (see the second column of Table 1) even
with the original specification. Introducing within-country-gender variation into the
instrumental variable leads to halving of the effect, to a decline of only 0.075 standard
deviation per year.

The methodology of Mazzonna and Peracchi (2012) differs from that of Rohwedder
and Willis (2010) not only in respect of the instrumental variable. They also assume a
different functional form, and control for a different set of features. Instead of using
just a retirement dummy (and thus estimating the effect conditional on the average
duration of retirement) they enter the number of years spent in retirement linearly
in the equation (i.e. they assume that f (Ri; β) = βRi). To adapt to the different en-
dogenous variable, they also modify the instrument accordingly: instead of using el-
igibility dummies, they calculate the years lived after reaching the eligibility age (i.e.
max(0, age− ageeligibility)). They control for age in a different manner: instead of re-
stricting the sample to 60-64 years old they estimate a linear age coefficient on a sample
of people aged 50-70. They also control for country dummies and estimate the equation
separately for men and women.

Table 2 summarizes the results of moving from the strategy of Rohwedder and Willis
(2010) to that of Mazzonna and Peracchi (2012) step by step. (Table A3 in Appendix
shows the corresponding first stage regression results.) This simple exercise illustrates
how sensitive the estimates are to various specifications. In the followings, I comment
on each specification, explaining what could be the reason behind the change (each
point discusses the estimated specification with the corresponding number):

(1) The estimated effect of 0.05 standard deviation yearly (first column) is compara-
ble to the effect estimated with the retirement dummy (see second column Table
1 and considering the average retirement duration of 6.6 years: 0.5 / 6.6 = 0.075).

(2) Extending the age range does not really matter.
(3) Restricting to those with labor market history makes the effect a bit larger. This

is practically due to excluding some outliers with 50+ years spent in retirement.
(4) Controlling for age delivers weird results. The effect doubles and the coeffi-

cient on age is positive: age seems to improve cognitive performance until re-
tirement, whereas it deteriorates it by around 0.14 standard deviation after that.
This could be explained by country differences: as Bingley and Martinello (2013)
draws the attention to, eligibility age and schooling is positively correlated (in
my sample the correlation is 0.21 and 0.14 for the early and normal eligibility
age, respectively). Therefore, comparing two individuals with the same age but
differing years after eligibility likely means comparing two individuals from dif-
ferent countries with the older one being from the better educated country. This
reasoning justifies the positive age coefficient and underlines the importance of
controlling for both age and country.
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Table 2: Moving from the strategy of Rohwedder and Willis (2010)
to that of Mazzonna and Peracchi (2012)

(1) (2) (3) (4) (5)
aged 60-64 aged 50-70 + worked at 50 + age + country

Years in retirement −0.051*** −0.053*** −0.083*** −0.169*** 0.158***
(0.0072) (0.0021) (0.0029) (0.015) (0.032)

Age 0.044*** −0.112***
(0.0075) (0.015)

Constant 0.376*** 0.359*** 0.226*** −2.157*** 6.090***
(0.051) (0.015) (0.012) (0.41) (0.77)

Country dummies No No No No Yes

Observations 4,052 17,448 14,052 14,052 14,052
Weak IV F statistic 118.05 1614.48 5779.83 246.16 60.57

Notes: The results are from the second stage estimation of Si = α + βRi + X∗
′

i γ∗ + ui with dif-
ferent samples and different X∗ where years of retirement is instrumented by early and normal
eligibility dummies. The corresponding first stage regressions are summarized in Table A3.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

(5) Controlling for country indeed solves the puzzle of positive age coefficient,
changing its sign to what is expected. However, now the coefficient of interest
changes sign and gets positive. The unexpected sign results again from omitted
variable bias: gender is not controlled for. As mentioned previously, women per-
form significantly better on memory tests (controlling for age) than men (for this
sample, they are by 0.28 standard deviation better. Thus, when we control for
both age and country, we mainly identify the retirement effect from gender vari-
ation. To see that this is really the case, check the results in the first two columns
of Table 3 where I also included a control for gender. The positive sign of the
coefficient of interest reverses back to what is expected. The next two columns of
the table shows the same result when the numeracy score is used to measure the
cognitive skills. Women perform on average by -0.28 standard deviation worse
on the numeracy test and correspondingly, we see larger negative effect of years
in retirement on numeracy when not controlling for gender. For fluency, there is
no notable difference in the performance of men and women.

There is one more puzzle in Table 3. Why is the coefficient on age is positive for numer-
acy when controlling for country but not for gender? (The same coefficient is negative
for TWR.) There is a possible explanation for that: as the sample ages so decreases the
share of women (interestingly, as mortality rates would predict the opposite). The coef-
ficient on age is mainly identified on non-eligible population (as for eligible population
the age effect is actually the sum of the coefficients on age and years in retirement). As
women are better in memory tests, and their share is smaller in older cohorts, the com-
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Table 3: Moving to the strategy of Mazzonna and Peracchi (2012) -
the effect of gender control for different measures of cognitive performance

(1) (2) (3) (4) (5) (6)
TWR TWR numeracy numeracy fluency fluency

Years in retirement 0.158*** −0.176*** −0.360*** −0.013 −0.038 −0.048
(0.032) (0.036) (0.042) (0.032) (0.026) (0.031)

Age −0.112*** 0.049*** 0.151*** −0.016 −0.007 −0.002
(0.015) (0.017) (0.020) (0.016) (0.013) (0.015)

Female 0.290*** −0.302*** 0.010
(0.022) (0.019) (0.019)

Constant 6.090*** −2.270** −7.318*** 1.392* 0.951 0.689
(0.77) (0.90) (1.03) (0.80) (0.64) (0.76)

Country dummies Yes Yes Yes Yes Yes Yes

Observations 14,052 14,052 14,145 14,145 14,004 14,004
Weak IV F statistic 60.57 43.41 61.11 44.23 62.38 45.15

Notes: The results are from the second stage estimation of Si = α+ βRi + X∗
′

i γ∗+ ui where years
in retirement is instrumented by early and normal eligibility dummies. Column (1) is equivalent
to column (5) of Table 2, it is included to ease the comparison.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

position effect implies a negative coefficient for age. By contrast, the opposite is true
for numeracy (women perform worse), so the composition effect implies a positive co-
efficient for age. Controlling for gender eliminates the level differences in cognitive
scores. However, the rate of cognitive decline due to retirement might still be different
by gender (i.e. heterogeneous retirement effect for men and women) that could further
complicate the results and make the direction of possible bias hard to assess.

To allow for heterogeneous retirement effect by gender, Mazzonna and Peracchi (2012)
estimate the equation separately for men and women in their preferred specification.
Table 4 show my replication for their strategy for total word recall, numeracy and
fluency. According to my results, the rate of decline is indeed different: the relatively
better performing gender suffers a larger decline. These estimations differ from that of
Mazzonna and Peracchi (2012) only in how cognitive performance is measured: they
adjust the cognitive scores by the time spent on answering them whereas I do not do.
Nevertheless, the replicated numbers are comparable to theirs, although less precise,
showing a yearly decline of about 0.02-0.05 standard deviation.

Although this strategy is more robust than the original one, there is a potential issue
that could contaminate the results. As already mentioned, education matters in old
age cognitive skills even if gained in early stages of life (Banks and Mazzonna, 2012).
Today’s pensioners are highly affected by the expansion of average schooling: the 50
years old cohort spent on average 2.7 years more in school than the cohort of 70. Maz-
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Table 4: Estimating separately by gender, closest to Mazzonna and Peracchi (2012)

(1) (2) (3) (4) (5) (6)
TWR TWR numeracy numeracy fluency fluency
men women men women men women

Years in retirement 0.015 −0.041* −0.058 −0.035 −0.025 −0.029
(0.037) (0.024) (0.039) (0.024) (0.037) (0.022)

Age −0.041** −0.017 0.008 −0.009 −0.011 −0.015
(0.017) (0.012) (0.018) (0.012) (0.017) (0.011)

Constant 2.403*** 1.309** 0.053 0.832 1.083 1.427**
(0.90) (0.61) (0.94) (0.61) (0.89) (0.56)

Country dummies Yes Yes Yes Yes Yes Yes

Observations 8,058 5,994 8,126 6,019 8,028 5,976
Weak IV F statistic 33.19 79.78 32.76 79.66 33.48 83.38

Notes: The results are from the second stage estimation of Si = α+ βRi + X∗
′

i γ∗+ ui where years
in retirement is instrumented. Mazzonna and Peracchi (2012) estimate different equations for
immediate and delayed word recall that I use as an aggregate total word recall. Their estimates
are –0.018** and 0.15* (men) and –0.051*** and –0.025*** (women) for IWR and DWR respectively,
–0.029*** (men) and –0.041*** for numeracy, and –0.006 (men) and –0.023** (women) for fluency.
See Column 2B of their Table 7.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

zonna and Peracchi (2012) try to control for education by including a low-education
dummy (they also interact this dummy with the effect) and show that education in-
deed plays a significant role in explaining the heterogeneity in the levels of cognitive
skills (and to a smaller extent in their age-related decline). However, there is also evi-
dence (see for example the PISA surveys) that countries are different in how effectively
they improve cognitive abilities in childhood. The first PISA survey was performed in
2000, the mean scores of countries in math, science and reading are positively corre-
lated with the eligibility ages (OECD, 2001). If there is some persistence in the quality
of education systems from the time when today’s pensioners went to school and that
of today, this might introduce a new type of bias in the estimations even if the number
of years spent in education is controlled for.

Mazzonna and Peracchi (2012) improve a lot on the first estimate, getting a much
smaller effect, but the sensibility of the results to different control sets show how hard
it is to ensure the exogeneity of the instrument in a cross-sectional setting. As public
policy rules only vary across countries and gender (mostly), and these are related to a
lot of factors that also affect individuals’ cognitive performance, controlling for all of
them seems nearly impossible.
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4.3 Bonsang et al. (2012)

The first paper that uses panel data to estimate the causal effect of retirement on cogni-
tive performance (Bonsang et al., 2012) looks only at the US: they extract information
from 6 waves (1998-2008) of the HRS.

In their main specification they follow the approach of Rohwedder and Willis (2010)
by estimating the effect of retirement through a simple dummy, that is not taking into
account the length of retirement. The only condition is that they restrict their atten-
tion to those who have been retired for at least one year. Formally, they assume that
f (Ri; β) = β̃1(Ri ≥ 1).

Using unbalanced panel data they could control for individual heterogeneity by esti-
mating a fixed effects specification. Thus, they could include ai in X∗i that means a
control for all time-invariant factors, like (mostly) gender and country. Additionally,
they also control for age in a quadratic form.

To handle the endogeneity of the retirement decision they also use eligibility ages as
instruments: first, the age of 62 which is the eligibility age for social security in the
US and second, the normal retirement age which varies by cohort. They measure the
cognitive performance of the individual with the total word recall score. They find
that being retired has an effect of 1 less word recalled, that could be translated into a
yearly drop of 0.05 standard deviation, a slightly larger effect than what was found by
Mazzonna and Peracchi (2012).

In the replication of their analysis, I use the same eligibility dummies for early and
normal retirement benefits as before - these should correspond to the dummies which
Bonsang et al. (2012) apply for the case of the US. Table 5 summarizes the results of
the estimation which follows the main specification of Bonsang et al. (2012) but for a
different sample (using SHARE instead of HRS). The age range (50-75) is the same,
but the time period is shorter due to data limitation (spanning over only 6 years of 3
waves). The corresponding first stages can be found in the Appendix (Table A4).

I could not replicate their results. Both the unrestricted retirement dummy that was
used by Rohwedder and Willis (2010) and the dummy requiring a retirement spell of
at least one year lead to positive coefficient estimates. Nonetheless, none of them are
significant.

The difference might originate from at least two sources: First, the US might be dif-
ferent from the European countries. Either because eligibility rules have a stronger
influence on the time of retirement which is suggested by my weaker first stage, or be-
cause retiring might mean something else in terms of cognition. This is a topic worth
investigating further. Second, my time period is shorter.
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Table 5: Replication of Bonsang et al. (2012)

(1) (2)
Retirement duration > 0 Retirement duration ≥ 1

Retired 0.0955 0.173
(0.14) (0.14)

Age 0.185*** 0.189***
(0.016) (0.017)

Age (sq.) −0.00131*** −0.00135***
(0.00013) (0.00014)

Observations 41,476 37,374
Weak IV F statistic 136.82 131.89

Notes: The results are from the second stage estimation of Si = α + ai +
βg(Ri) + ui where g(Ri) = 1(Ri > 0) or 1(Ri ≥ 1) and these dummies are
instrumented by early and normal eligibility dummies. The coefficient of in-
terest in Bonsang et al. (2012) is –0.942*** on a sample of 54,377 observations.
This amounts to 0.27 standard deviation, or (considering the average dura-
tion of retirement in their sample) a yearly drop of 0.05 standard deviation.
The corresponding first stage estimates are summarized in Table A4.
Weak IV F statistic is calculated according to Angrist and Pischke (2008).
Stock et al. (2002) suggest that an F below 10 should make us worry about
the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Estimating the fixed-effects model on an unbalanced panel makes the results hard to
interpret. Mazzonna and Peracchi (2012) argue that panel data is inappropriate for
identifying the causal effect of retirement on cognition because of two reasons: First,
as in each wave the exact same cognitive exercises are performed, the participants may
remember their answers from previous waves. Second, there is considerable attrition
in the sample which might also bias the result. The unbalance in the data means that
people who are present throughout the whole period get more weight. This makes it
ambiguous how learning and attrition could bias the estimates. Also, pooling waves
that extend over 10 years mixes cohorts that are differently affected by the extension
of education. This could lead to compositional effect with unclear consequences. To
assess the magnitude of these problems, I estimating the same relationship on different
time periods. The resulting point estimates vary a lot, but all remain positive and
insignificant (see Table A5 in the Appendix). We need a cleaner identification strategy
to reliably estimate the causal effect.

5 My strategy

I demonstrated in the previous section that getting a clear causal effect in cross-section
is really challenging. Some straightforward improvements upon the strategy of Ro-
hwedder and Willis (2010) resulted in a drop of the estimated effect from 0.23 standard
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deviation per year to a magnitude less. But still, there are plenty of factors left in
u∗i which are likely to bias our results (to a yet unknown extent). Moving to panel
identification solves a lot of issues. It enables us to compare the cognitive scores of
the exact same individual instead of assuming that another one is a good subject for
the comparison. The fixed-effects specification on unbalanced panel data resulted in
a negative estimated yearly decline with comparable magnitude to what we get with
the improved cross-sectional method, but this does not let itself be replicated on my
data and might be subject to other biases resulting from attrition, learning and cohort
effects.

I suggest a novel identification strategy that also exploits the panel nature of the data
but aims for more clarity in the mechanisms. Instead of pooling periods, I look at
changes between two periods to identify whether the cognitive paths differ for retired
and non-retired individuals. Formally, I estimate the following equation

∆Si = α∗ + β∆Ri + θ′Wi + ∆ũi (6)

where ∆Si is the change in cognitive performance between two waves (measured by
TWR, numeracy or fluency score) and ∆Ri is the number of years spent in retirement
during this period. Note that this specification implies a balanced panel. It also con-
trols for all time-invariant individual heterogeneity like gender, amount and quality
of education, country, etc.3 Variables Wi control for different trends (instead of just
level differences). This way I can handle issues like different rates of cognitive decline
by gender, as discussed in the replication of Mazzonna and Peracchi (2012). The use
of years spent in retirement instead of a simple retirement dummy captures better the
actual treatment. To handle endogeneity, I use the same instruments as Mazzonna and
Peracchi (2012): years after early and normal eligibility ages.

Following from the nature of the data collection, the time elapsed between interviews
of two waves is not the same for all individual (e.g. it ranges from 11 to 40 months
between the first two waves). Therefore, the amount of ageing between two waves
is not the same across the sample so I need to control for this by including the years
elapsed variable in W .

This strategy makes evaluating the panel concerns easier. The learning effect is cap-
tured by the constant term: if people are indeed better at their second and third inter-
views because of the repetition, α̂∗ should be positive. However, learning effect shall
not bias the coefficient of interest due to the balanced panel. It only matters if learning

3For two time periods, regression on differences gives the same coefficient estimates as the fixed
effect specification on a balanced panel.
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is different for employed and retired persons, but in this case, this is part of the retire-
ment effect so it should be estimated within the treatment effect – and this is exactly
what is going to happen in this specification.

Using a balanced panel also resolves some of the attrition concerns. To see whether it
still causes any a problem, I will estimate the same relationship on different samples
(comparing different waves) which are likely to suffer from different attrition rates and
check whether they are different.

I have three waves of SHARE, so I can estimate the differences in three ways: between
wave 1 and 4 (the longest period), between wave 1 and 2, and between wave 2 and
4. I restrict my sample to those who were aged between 50 and 70 and were either
employed or retired in the first period, and has worked at age 50. I exclude those who
returned to the labor market during this period (around 5% of the sample). Table 6
summarizes the data for the different comparison periods.

Table 6: Summary statistics

Sample Men Women
wave 1 wave 2 wave 4 N wave 1 wave 2 wave 4 N

wave
1-4

age 59.7 66.3 3,551 58.9 65.5 2,877
(5.9) (6.0) (5.8) (5.9)

TWR 8.73 9.22 3,528 9.82 10.49 2,866
(3.17) (3.27) (3.30) (3.37)

numeracy 3.74 3.82 3,547 3.48 3.56 2,873
(1.03) (1.02) (1.02) (1.00)

fluency 21.34 20.41 3,510 22.00 21.25 2,858
(7.08) (6.94) (7.04) (7.24)

retired 1,537 2,244 3,551 1,137 1,761 2,877

wave
1-2

age 59.7 62.1 5,332 58.9 61.2 4,026
(5.9) (6.0) (5.9) (5.9)

TWR 8.71 9.01 5,258 9.78 10.13 3,998
(3.13) (3.17) (3.26) (3.23)

numeracy 3.76 3.80 5,295 3.48 3.54 4,000
(1.01) (1.04) (1.04) (1.03)

fluency 20.48 20.56 5,214 21.31 21.43 3,986
(7.13) (7.10) (7.11) (7.35)

retired 2,346 2,702 5,332 1,651 1,933 4,026

wave
2-4

age 60.3 64.5 4,359 59.2 63.5 3,783
(5.8) (5.8) (5.8) (5.9)

TWR 9.23 9.53 4,330 10.47 10.81 3,765
(3.10) (3.20) (3.23) (3.30)

numeracy 3.86 3.87 4,345 3.58 3.60 3,765
(1.03) (1.01) (1.02) (1.00)

fluency 21.69 20.87 4,313 21.31 21.43 3,757
(7.17) (6.94) (7.14) (7.07)

retired 1,712 2,142 4,359 1,319 1,711 3,783

Notes: The table presents the means and standard deviations (in parentheses) of the individuals’
characteristics for each sample, by gender and wave.

Figure 1 shows the average paths of cognitive score of the individuals who were
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present in all waves, by working history for each country. For example, working his-
tory of 110 indicates a person who worked during the first two waves but left between
wave 2 and 4. The first thing to note is that no clear pattern arises regarding the effect
of retirement. There are some signs of selection and learning, but it does not seem like
retirement would have any clear-cut effect on cognitive scores.

Figure 1: Pattern of cognitive scores across waves by working history

Switzerland Belgium

Spain Italy France Denmark

Austria Germany Sweden Netherlands

1 2 4 1 2 4

1 2 4 1 2 4

7
8
9

10
11

7
8
9

10
11

7
8
9

10
11

wave

M
e

a
n

 s
c
o

re
 o

n
 t

o
ta

l 
w

o
rd

 r
e

c
a

ll

Working history

100

110

111

Notes: Working history code corresponds to the three waves used in the analysis, each digit displaying
1 if the individual worked in the given wave (100: worked only in first wave, 110: worked in first two
waves, 111: worked in each wave).

The first three columns of Table 7 shows the 2SLS results for changes in total word
recall score between wave 1 and 4 with different controls (again, years in retirement is
instrumented by years after the eligibility ages). It seems that one more year in retire-
ment decreases the cognitive score by 0.03-0.04 standard deviation point. My preferred
specification is in column (3) where I allow for different trends in cognitive decline by
gender and country. According to the estimates, women tend to lose their abilities
slower. The positive constant term includes the effect of learning. The magnitude of
the effect is comparable to that of Table 4, the closest replication of Mazzonna and
Peracchi (2012). Note that my estimates are much more stable to including additional
controls (e.g. allowing for different trends by country) which I interpret as a sign that
the panel specification in itself eliminates many biases inherent in a cross-sectional
analysis.

However, there is a reasonable scenario we have not considered yet. If natural age-
related cognitive decline is concave instead of being linear then controlling only for a
linear age trend might attribute the larger decline in older ages to the effect of retire-
ment. Unfortunately, we are unable to allow for heterogeneous age effect and still use
our instruments (there is not enough variability within country, gender and age). It
still makes sense to run simple OLS regressions to see the difference.
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Table 7: Panel estimation: change in total word recall score between wave 1 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.025*** −0.026*** −0.040*** −0.028*** −0.016**
(0.0058) (0.0058) (0.0060) (0.0044) (0.0065)

Years elapsed −0.263*** −0.263*** −0.084* −0.093* −0.093*
(0.033) (0.033) (0.050) (0.050) (0.050)

Female 0.042 0.053** 0.055** 0.049*
(0.026) (0.026) (0.026) (0.026)

Age at first wave −0.009***
(0.0032)

Constant 1.819*** 1.808*** 0.568* 0.571* 1.086***
(0.22) (0.22) (0.34) (0.34) (0.39)

Country dummies No No Yes Yes Yes

Observations 6,394 6,394 6,394 6,394 6,394
Weak IV F statistic 3729.06 3787.19 3665.10

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4 − Mi,w=1 and Si = Total word recalli. For 2SLS, the second stage regressions are re-
ported where ∆Ri is instrumented by the distance from early and normal retirement age, and
W include years elapsed, female dummy and country dummies. For OLS, W additionally
include age at first wave. The corresponding first stage estimates are summarized in Table
A7.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

If we compare the third and fourth columns of the tables we can see that OLS results
are slightly smaller in absolute value than those of 2SLS. Originally, we were afraid
of a negative selection bias. This difference could be possibly explained by two facts:
First, we eliminated all time-invariant individual heterogeneity so selection only mat-
ters if the rate of decline is different as well. Second, the 2SLS estimate the Local Av-
erage Treatment Effect (LATE), the effect of retirement on those who retired because
reaching the eligibility age. These people might have been exposed a bigger change
in their lifestyle than those who were retired anyway, and thus, might have been af-
fected by a more expressed cognitive shock at retirement. Including age control (col-
umn 5) decreases the OLS estimate further, to less than 0.02 standard deviation yearly.
This decline suggests that the 2SLS estimate in column (3) without age control slightly
overestimates the true effect.

The same results for the other periods and other cognitive measures along with the
corresponding first stages can be found in Appendix. The results are mainly consis-
tent: 2SLS estimate a yearly decline of 0.01-0.05 standard deviation. The OLS estimates
are smaller in absolute value, ranging between 0 and 0.02 standard deviation. There is
no clear pattern by periods and measures which serves as a robustness check for the
results4. My results are even smaller than the previous ones, like Mazzonna and Per-

4The other coefficients are less consistent. Sometimes, the constant term and the years elapsd estimate

18



acchi (2012) and Bonsang et al. (2012), especially if we take into account that the 2SLS
estimates might still overestimate the true effect.

As an additional robustness check, we can estimate the preferred specifications sep-
arately for men and women. We saw before that is was crucial in the cross-sectional
setting to pin down the estimates. In contrast, in the panel setting it is less of concern.
Figure 2 compares the estimates by gender along with the pooled estimates. The es-
timated coefficients lie close to each other in every setting. The picture they draw is
consistent: the effect of retirement on cognition cannot exceed a yearly 0.05 standard
deviation decline (that is close in magnitude to what Mazzonna and Peracchi (2012)
and Bonsang et al. (2012) get with different methods), and it might still be an overesti-
mate of the true effect (see the near-zero OLS-estimates).

Figure 2: Comparison of the retirement effect estimate by gender
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Notes: The dots represent β̂, the lines show the 95% confidence intervals from the estimation of ∆Si =

α∗ + β∆Ri + W∗′
i ν + ∆ũi, pooled and separately by gender. For 2SLS, the second stage regressions

are reported where ∆Ri is instrumented by the distance from early and normal retirement age, and W
include years elapsed, and country dummies. For OLS, W additionally include age at first wave.

6 Concluding remarks

Several recent works investigate the effect of retirement on cognitive performance, ar-
riving to very different conclusions. To better understand the mechanisms that cause
the excursive outcomes, I replicated the methods of the literature using data from
the first three general waves of Survey of Health, Ageing and Retirement in Europe
(SHARE). This exercise showed that identifying a clear causal effect is far from straight-
forward. Ideally, we would need to compare individuals from the same cohort and

switch sign – it can be a result of the high noise and the difficulty to separate the effects as there is a little
variation in the years elapsed variable. The female coefficient is mostly positive.
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country, with the same age and education, one of them randomly assigned to be re-
tired for a period of time while the other being working. Such a comparison is clearly
impossible. I traced back the major difference in the estimations to omitted variable
bias: the large estimated retirement effect can be reduced a lot controlling for relevant
variables such as gender and country. However, even after the inclusion of controls,
the estimate is likely to be biased.

I came up with a novel identification strategy to solve the issues. I use the longitudinal
feature of the data and compare the cognitive paths of employed and retired individ-
uals. My estimated effect is even smaller than the smallest estimate in the literature,
amounting to at most 0.05 standard deviation point decline yearly (that is still likely to
be overestimated).

I reckon that retirement in itself has essentially no effect. What matters is the accom-
panying change in the lifestyle – that could be very heterogeneous across agents: some
may retire from a stressful job to get more time to relax and care for grandchildren,
others may lose the meaning of their lives. There are some works in the psychology
literature that point to this direction. Stine-Morrow (2007) investigates the so called
Dumbledore hypothesis, that individual choice plays a crucial role in old age cognitive
decline. "it is our choices... that show what we truly are, far more than our abilities"
(Rowling, 1999). Aichberger et al. (2010) find that physical inactivity goes together
with worse cognitive performance. Hertzog et al. (2009) summarize previous results
about what older adults can do to preserve their functional capacity. Future empirical
work in this topic should build in these considerations and try to uncover the hetero-
geneous effect of retirement on cognitive performance, differentiating by the nature of
the retirement, that is how it affected the individual’s lifestyle.

Apart from the actual question I see my paper contributing to the literature in a more
general way as well: it shows that replicating previous works and synthesizing their
findings can lead to better understanding of the problem. Amidst of the replication
crisis (Ioannidis, 2018) I consider this as a valuable lesson and hope to see more efforts
towards this direction in the future.
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A Comparison of methodologies in the literature

Table A1: Comparing the methodologies of the literature

Rohwedder and Willis (2010) Mazzonna and Peracchi (2012) Bonsang et al. (2012)

f (Ri; β) β̃1(Ri > 0) βRi β̃1(Ri ≥ 1)

X∗i - age, gender, country dum-
mies

age, age squared, individual
fixed effects

Zi normal & early eligibility
dummies (no variation
within country-gender cells)

normal & early eligibility
dummies (some variation
within country-gender cells)

social security eligibility &
normal retirement age

used data 2004 waves of SHARE &
HRS & ELSA

2004 wave of SHARE 6 waves (1998-2008) of HRS

Notes: Using a simple retirement dummy instead of years in retirement is equivalent to estimating the average
effect conditional on the average time spent in retirement in the sample (or the average time excluding fresh
retirees as in the case of Bonsang et al. (2012)), i.e. β̃ = βRi.

B Additional tables for the replication exercises

This appendix contains summary tables of the first stage regressions for the replica-
tions exercises. It also contains a robustness check summary, replicating the method of
Bonsang et al. (2012) on various subsamples.

Table A2: Comparing the methodology of Rohwedder and Willis (2010)
by two versions of the instrumental variable: first stage

(1) (2)
Rohwedder and Willis (2010) Mazzonna and Peracchi (2012)

Eligible for early benefits 0.323*** 0.246***
(0.028) (0.027)

Eligible for full benefits 0.165*** 0.185***
(0.014) (0.014)

Constant 0.375*** 0.439***
(0.027) (0.025)

Observations 4,464 4,464
Adjusted R2 0.0643 0.065

Notes: Both results are from the first stage estimation of Si = α + β1(Ri > 0) + ui where
the retirement dummy is instrumented by early and normal eligibility dummies. The corre-
sponding coefficients for early and full benefits in Rohwedder and Willis (2010) are 0.19***
and 0.16**, respectively, with the adjusted R2 being 0.059 on a sample of 8,828 observations.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A3: Moving from the strategy of Rohwedder and Willis (2010)
to that of Mazzonna and Peracchi (2012): first stage

(1) (2) (3) (4) (5)
aged 60-64 aged 50-70 + worked at 50 + age + country

Years after early eligibility 0.303*** 0.016 0.183*** 0.129*** 0.033
(0.071) (0.033) (0.013) (0.013) (0.025)

Years after normal eligibility 0.580*** 0.581*** 0.266*** 0.144*** 0.166***
(0.079) (0.033) (0.013) (0.015) (0.018)

Age 0.200*** 0.274***
(0.013) (0.024)

Constant 6.437*** 8.310*** 3.696*** −8.659*** −11.793***
(0.38) (0.18) (0.071) (0.83) (1.42)

Country dummies No No No No Yes

Observations 4,052 17,448 14,052 14,052 14,052
Adjusted R2 0.0546 0.1561 0.4513 0.4599 0.4784

Notes: All results are from the first stage estimation of Si = α + βRi + X∗
′

i γ∗+ ui where the retirement
dummy is instrumented by early and normal eligibility dummies.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A4: First stages, FE-IV estimation mimicing Bonsang et al. (2012)

(1) (2)
Retired Retired for at least 1 year

Eligible for normal retirement 0.104*** 0.110***
(0.0072) (0.0076)

Eligible for early retirement 0.0594*** 0.0586***
(0.0069) (0.0070)

Age 0.000523 0.00491
(0.0060) (0.0059)

Age (sq.) 0.0000661 0.0000438
(0.000046) (0.000046)

Observations 41,476 37,374
Within-R2 0.0575 0.0689

Notes: The results are from the first stage estimation of Si = α + βg(Ri) + ui
where g(Ri) = 1(YRi > 0) or 1(YRi ≥ 1) and these retirement dummies are
instrumented by early and normal eligibility dummies. The corresponding co-
efficients for the eligibility dummies are 0.11*** and 0.07*** in Bonsang et al.
(2012) on a sample of 54,377 observations with a within-R2 of 0.242.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

C Detailed estimation tables for my strategy

This section contains the estimation results of my strategy for each cognitive score, for
each period, along with the corresponding first stages. The main results of these tables
are summarized in Figure 2 in Section 5.
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Table A5: Replication of Bonsang et al. (2012) on various subsamples

(1) (2) (3)
wave 1-2 wave 2-4 wave 1-2-4

Retired for at least 1 year 0.394 0.248 0.127
(0.65) (0.19) (0.15)

Age 0.105*** 0.201*** 0.202***
(0.038) (0.026) (0.024)

Age (sq.) −0.000587** −0.00153*** −0.00145***
(0.00029) (0.00020) (0.00018)

Observations 24,470 19,362 19,746
Weak IV F statistic 8.28 78.28 106.80

Notes: The results are from the second stage estimation of Si = α + ai +
βg(Ri) + ui where g(Ri) = 1(Ri ≥ 1) and this dummy is instrumented by
early and normal eligibility dummies. The corresponding first stage estimates
are summarized in Table A6.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock
et al. (2002) suggest that an F below 10 should make us worry about the po-
tential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A6: First stages, replication of Bonsang et al. (2012) on various subsamples

(1) (2) (3)
wave 1-2 wave 2-4 wave 1-2-4

Eligible for normal retirement 0.104*** 0.110*** 0.133***
(0.0072) (0.0076) (0.0097)

Eligible for early retirement 0.0594*** 0.0586*** 0.0578***
(0.0069) (0.0070) (0.0094)

Age 0.000523 0.00491 0.0272***
(0.0060) (0.0059) (0.0087)

Age (sq.) 0.0000661 0.0000438 −0.000109
(0.000046) (0.000046) (0.000067)

Observations 41,476 37,374 19,746

Notes: The results are from the first stage estimation of Si = α+ βg(Ri) + ui where g(Ri) =
1(YRi ≥ 1) and this dummy is instrumented by early and normal eligibility dummies.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A7: Panel estimation: change in total word recall score between wave 1 and 4:
first stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.270*** 0.249*** 0.215***
(0.015) (0.015) (0.019)

Years after normal eligibility 0.071*** 0.094*** 0.132***
(0.015) (0.015) (0.019)

Years elapsed 0.270*** 0.255*** 0.377***
(0.067) (0.066) (0.096)

Female −0.408*** −0.366***
(0.052) (0.051)

Constant −0.594 −0.218 −0.041
(0.47) (0.47) (0.67)

Country dummies No No Yes

Observations 6,394 6,394 6,394

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 −Mi,w=1, Si = Total word recalli and ∆Ri is instrumented by distance from early
and normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A8: Panel estimation: change in total word recall score between wave 1 and 2

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.019 −0.018 −0.017 −0.017* −0.015
(0.013) (0.013) (0.013) (0.0090) (0.013)

Years elapsed 0.001 0.002 0.085** 0.084** 0.084**
(0.025) (0.025) (0.040) (0.040) (0.040)

Female 0.016 0.010 0.010 0.010
(0.020) (0.020) (0.020) (0.020)

Age at first wave 0.000
(0.0024)

Constant 0.016 0.008 −0.094 −0.094 −0.067
(0.059) (0.060) (0.11) (0.11) (0.18)

Country dummies No No Yes Yes Yes

Observations 9,256 9,256 9,256 9,256 9,256
Weak IV F statistic 4272.83 4353.52 4332.50

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=2 −Mi,w=1 and Si = Total word recalli. For 2SLS, the second stage regres-
sions are reported where ∆Ri is instrumented by the distance from early and normal
retirement age, and W include years elapsed, female dummy and country dummies.
For OLS, W additionally include age at first wave. The corresponding first stage esti-
mates are summarized in Table A9.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al.
(2002) suggest that an F below 10 should make us worry about the potential bias in the
IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A9: Panel estimation: change in total word recall score between wave 1 and 2:
first stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.063*** 0.052*** 0.073***
(0.0041) (0.0042) (0.0060)

Years after normal eligibility 0.061*** 0.073*** 0.054***
(0.0041) (0.0043) (0.0059)

Years elapsed 0.388*** 0.380*** 0.374***
(0.021) (0.021) (0.033)

Female −0.173*** −0.146***
(0.018) (0.018)

Constant 0.070 0.226*** 0.518***
(0.056) (0.058) (0.096)

Country dummies No No Yes

Observations 9,256 9,256 9,256

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 −Mi,w=1, Si = Total word recalli and ∆Ri is instrumented by distance from early
and normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A10: Panel estimation: change in total word recall score between wave 2 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.027*** −0.028*** −0.045*** −0.028*** −0.012
(0.0079) (0.0079) (0.0081) (0.0057) (0.0082)

Years elapsed 0.040 0.041 −0.029 −0.043 −0.037
(0.042) (0.042) (0.053) (0.052) (0.052)

Female −0.003 0.008 0.010 0.003
(0.023) (0.023) (0.023) (0.023)

Age at second wave −0.008***
(0.0028)

Constant −0.119 −0.119 0.011 0.020 0.463*
(0.18) (0.18) (0.23) (0.23) (0.28)

Country dummies No No Yes Yes Yes

Observations 8,095 8,095 8,095 8,095 8,095
Weak IV F statistic 4185.47 4205.43 4081.89

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4 − Mi,w=2 and Si = Total word recalli. For 2SLS, the second stage regressions are re-
ported where ∆Ri is instrumented by the distance from early and normal retirement age, and
W include years elapsed, female dummy and country dummies. For OLS, W additionally in-
clude age at first wave. The corresponding first stage estimates are summarized in Table A11.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

27



Table A11: Panel estimation: change in total word recall score between wave 2 and 4:
first stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.157*** 0.147*** 0.125***
(0.0086) (0.0087) (0.012)

Years after normal eligibility 0.072*** 0.083*** 0.107***
(0.0088) (0.0090) (0.012)

Years elapsed −0.055 −0.048 0.234***
(0.058) (0.058) (0.072)

Female −0.189*** −0.168***
(0.032) (0.032)

Constant 1.310*** 1.420*** 0.863***
(0.25) (0.25) (0.32)

Country dummies No No Yes

Observations 8,095 8,095 8,095

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 −Mi,w=2, Si = Total word recalli and ∆Ri is instrumented by distance from early
and normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A12: Panel estimation: change in numeracy score between wave 1 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.008 −0.008 −0.008 −0.009** −0.010
(0.0053) (0.0052) (0.0055) (0.0040) (0.0059)

Years elapsed −0.001 −0.001 0.048 0.049 0.049
(0.029) (0.029) (0.045) (0.045) (0.045)

Female −0.001 −0.002 −0.002 −0.002
(0.023) (0.023) (0.023) (0.024)

Age at first wave 0.000
(0.0029)

Constant 0.035 0.035 −0.252 −0.252 −0.260
(0.19) (0.19) (0.31) (0.31) (0.36)

Country dummies No No Yes Yes Yes

Observations 6,420 6,420 6,420 6,420 6,420
Weak IV F statistic 3728.74 3787.09 3668.76

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4 − Mi,w=1 and Si = Numeracyi. For 2SLS, the second stage regressions are reported
where ∆Ri is instrumented by the distance from early and normal retirement age, and W in-
clude years elapsed, female dummy and country dummies. For OLS, W additionally include
age at first wave. The corresponding first stage estimates are summarized in Table A13.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A13: Panel estimation: change in numeracy score between wave 1 and 4: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.270*** 0.250*** 0.215***
(0.015) (0.015) (0.019)

Years after normal eligibility 0.070*** 0.093*** 0.132***
(0.015) (0.015) (0.019)

Years elapsed 0.275*** 0.260*** 0.382***
(0.067) (0.066) (0.096)

Female −0.409*** −0.366***
(0.052) (0.051)

Constant −0.627 −0.250 −0.074
(0.46) (0.46) (0.67)

Country dummies No No Yes

Observations 6,420 6,420 6,420

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 −Mi,w=1, Si = Numeracyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A14: Panel estimation: change in numeracy score between wave 1 and 2

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.026** −0.028** −0.028** −0.020** −0.012
(0.013) (0.013) (0.013) (0.0090) (0.013)

Years elapsed 0.027 0.029 0.018 0.015 0.013
(0.025) (0.025) (0.040) (0.040) (0.040)

Female 0.029 0.031 0.032 0.030
(0.020) (0.020) (0.020) (0.020)

Age at first wave −0.002
(0.0024)

Constant −0.039 −0.053 0.023 0.019 0.154
(0.059) (0.060) (0.11) (0.11) (0.18)

Country dummies No No Yes Yes Yes

Observations 9,295 9,295 9,295 9,295 9,295
Weak IV F statistic 4282.96 4362.29 4341.05

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=2 − Mi,w=1 and Si = Numeracyi. For 2SLS, the second stage regressions
are reported where ∆Ri is instrumented by the distance from early and normal retire-
ment age, and W include years elapsed, female dummy and country dummies. For
OLS, W additionally include age at first wave. The corresponding first stage estimates
are summarized in Table A15.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al.
(2002) suggest that an F below 10 should make us worry about the potential bias in the
IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A15: Panel estimation: change in numeracy score between wave 1 and 2: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.063*** 0.052*** 0.073***
(0.0041) (0.0042) (0.0060)

Years after normal eligibility 0.061*** 0.073*** 0.053***
(0.0041) (0.0043) (0.0059)

Years elapsed 0.390*** 0.382*** 0.375***
(0.021) (0.021) (0.033)

Female −0.172*** −0.144***
(0.018) (0.018)

Constant 0.064 0.218*** 0.515***
(0.056) (0.058) (0.096)

Country dummies No No Yes

Observations 9,295 9,295 9,295

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=2 −Mi,w=1, Si = Numeracyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A16: Panel estimation: change in numeracy score between wave 2 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.003 −0.003 −0.005** −0.005*** −0.004*
(0.0020) (0.0020) (0.0020) (0.0014) (0.0021)

Years elapsed 0.030*** 0.031*** 0.018 0.018 0.018
(0.010) (0.010) (0.013) (0.013) (0.013)

Female −0.005 −0.006 −0.006 −0.006
(0.0056) (0.0056) (0.0056) (0.0057)

Age at second wave 0.000
(0.00069)

Constant −0.123*** −0.122*** −0.031 −0.031 −0.011
(0.043) (0.043) (0.057) (0.057) (0.069)

Country dummies No No Yes Yes Yes

Observations 8,110 8,110 8,110 8,110 8,110
Weak IV F statistic 4172.20 4190.63 4072.09

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4−Mi,w=2 and Si = Numeracyi. For 2SLS, the second stage regressions are reported where
∆Ri is instrumented by the distance from early and normal retirement age, and W include years
elapsed, female dummy and country dummies. For OLS, W additionally include age at first
wave. The corresponding first stage estimates are summarized in Table A17.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002) sug-
gest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A17: Panel estimation: change in numeracy score between wave 2 and 4: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.157*** 0.147*** 0.125***
(0.0086) (0.0087) (0.012)

Years after normal eligibility 0.072*** 0.083*** 0.107***
(0.0088) (0.0090) (0.012)

Years elapsed −0.062 −0.055 0.231***
(0.058) (0.058) (0.072)

Female −0.184*** −0.164***
(0.032) (0.032)

Constant 1.338*** 1.446*** 0.872***
(0.25) (0.25) (0.32)

Country dummies No No Yes

Observations 8,110 8,110 8,110

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 −Mi,w=2, Si = Numeracyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A18: Panel estimation: change in fluency score between wave 1 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.038*** −0.039*** −0.041*** −0.024*** −0.003
(0.0053) (0.0053) (0.0055) (0.0040) (0.0060)

Years elapsed 0.008 0.008 0.058 0.046 0.046
(0.030) (0.030) (0.046) (0.046) (0.046)

Female 0.018 0.042* 0.045* 0.036
(0.024) (0.024) (0.024) (0.024)

Age at first wave −0.014***
(0.0030)

Constant 0.076 0.071 −0.313 −0.311 0.540
(0.20) (0.20) (0.31) (0.31) (0.36)

Country dummies No No Yes Yes Yes

Observations 6,368 6,368 6,368 6,368 6,368
Weak IV F statistic 3733.22 3793.56 3670.54

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4−Mi,w=1 and Si = Fluencyi. For 2SLS, the second stage regressions are reported where
∆Ri is instrumented by the distance from early and normal retirement age, and W include
years elapsed, female dummy and country dummies. For OLS, W additionally include age at
first wave. The corresponding first stage estimates are summarized in Table A19.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A19: Panel estimation: change in fluency score between wave 1 and 4: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.270*** 0.248*** 0.213***
(0.015) (0.015) (0.019)

Years after normal eligibility 0.072*** 0.095*** 0.135***
(0.015) (0.015) (0.019)

Years elapsed 0.263*** 0.247*** 0.371***
(0.067) (0.067) (0.097)

Female −0.416*** −0.373***
(0.052) (0.051)

Constant −0.541 −0.152 0.008
(0.47) (0.47) (0.67)

Country dummies No No Yes

Observations 6,368 6,368 6,368

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 − Mi,w=1, Si = Fluencyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A20: Panel estimation: change in fluency score between wave 1 and 2

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.021* −0.021* −0.026** −0.015* −0.003
(0.011) (0.011) (0.012) (0.0081) (0.011)

Years elapsed 0.044* 0.044* 0.155*** 0.150*** 0.147***
(0.023) (0.023) (0.036) (0.036) (0.036)

Female 0.005 0.011 0.011 0.009
(0.018) (0.018) (0.018) (0.019)

Age at first wave −0.003
(0.0022)

Constant −0.084 −0.086 −0.587*** −0.594*** −0.404**
(0.054) (0.055) (0.099) (0.099) (0.16)

Country dummies No No Yes Yes Yes

Observations 9,200 9,200 9,200 9,200 9,200
Weak IV F statistic 4250.45 4330.57 4310.36

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=2 −Mi,w=1 and Si = Fluencyi. For 2SLS, the second stage regressions are
reported where ∆Ri is instrumented by the distance from early and normal retirement
age, and W include years elapsed, female dummy and country dummies. For OLS,
W additionally include age at first wave. The corresponding first stage estimates are
summarized in Table A21.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al.
(2002) suggest that an F below 10 should make us worry about the potential bias in the
IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A21: Panel estimation: change in fluency score between wave 1 and 2: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.062*** 0.051*** 0.072***
(0.0041) (0.0042) (0.0060)

Years after normal eligibility 0.062*** 0.074*** 0.055***
(0.0042) (0.0043) (0.0060)

Years elapsed 0.388*** 0.379*** 0.375***
(0.021) (0.021) (0.033)

Female −0.173*** −0.145***
(0.018) (0.018)

Constant 0.074 0.230*** 0.519***
(0.056) (0.058) (0.096)

Country dummies No No Yes

Observations 9,200 9,200 9,200

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=2 − Mi,w=1, Si = Fluencyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.

Table A22: Panel estimation: change in fluency score between wave 2 and 4

(1) (2) (3) (4) (5)
2SLS 2SLS 2SLS OLS OLS

Years in retirement −0.036*** −0.036*** −0.031*** −0.016*** 0.002
(0.0072) (0.0072) (0.0073) (0.0052) (0.0075)

Years elapsed −0.014 −0.015 0.192*** 0.179*** 0.185***
(0.038) (0.038) (0.048) (0.048) (0.048)

Female 0.012 0.021 0.023 0.016
(0.021) (0.021) (0.021) (0.021)

Age at second wave −0.008***
(0.0025)

Constant 0.132 0.129 −0.693*** −0.686*** −0.222
(0.16) (0.16) (0.21) (0.21) (0.25)

Country dummies No No Yes Yes Yes

Observations 8,070 8,070 8,070 8,070 8,070
Weak IV F statistic 4173.04 4193.86 4070.78

Notes: All results are from the estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where ∆Mi =

Mi,w=4 −Mi,w=2 and Si = Fluencyi. For 2SLS, the second stage regressions are reported where
∆Ri is instrumented by the distance from early and normal retirement age, and W include
years elapsed, female dummy and country dummies. For OLS, W additionally include age at
first wave. The corresponding first stage estimates are summarized in Table A23.
Weak IV F statistic is calculated according to Angrist and Pischke (2008). Stock et al. (2002)
suggest that an F below 10 should make us worry about the potential bias in the IV estimation.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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Table A23: Panel estimation: change in fluency score between wave 2 and 4: first
stage

(1) (2) (3)
Years in retirement Years in retirement Years in retirement

Years after early eligibility 0.157*** 0.146*** 0.124***
(0.0086) (0.0087) (0.012)

Years after normal eligibility 0.072*** 0.084*** 0.108***
(0.0088) (0.0090) (0.012)

Years elapsed −0.049 −0.042 0.240***
(0.058) (0.058) (0.072)

Female −0.192*** −0.172***
(0.032) (0.032)

Constant 1.289*** 1.401*** 0.848***
(0.25) (0.25) (0.32)

Country dummies No No Yes

Observations 8,070 8,070 8,070

Notes: The results are from the first stage estimation of ∆Si = α∗ + β∆Ri + W∗′
i ν + ∆ũi where

∆Mi = Mi,w=4 − Mi,w=2, Si = Fluencyi and ∆Ri is instrumented by distance from early and
normal retirement age.
* p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors in parentheses.
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