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Abstract

This paper studies the effects of enrollment in an elite school on elite-school students’

academic achievement in Hungary. Enrollment in a Hungarian elite school entails having

academically stronger peers and early switching to a secondary school. We examine ef-

fects for elite-school students throughout the outcome distribution using a mild stochastic

dominance assumption. We find that enrollment in an elite school decreases female and

low-ability students’ mathematics test scores two years after enrollment. However, these

negative effects are short-lived, and we obtain estimates that are consistent with substan-

tial positive effects four years after enrollment. School value-added estimates lie within

our non-parametric bounds, and confirm the positive effects on the medium run.
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1 Introduction

Most school districts feature elite schools in which admission is merit-based (i.e., depends on

a qualifying priority score) and the student body consists of affluent, high-achieving students.

Admission to these elite schools is highly selective and preparation for the admission requires

substantial pecuniary and non-pecuniary resources from the parents of prospective students.

Therefore, it is important for these parents to understand the extent to which their child may

benefit from enrollment in an elite school.

A large literature studies the effectiveness of elite schools (for a recent summary, see

Beuermann and Jackson, Forthcoming). This literature exploits discontinuities in admission

chances that are created by the merit-based priority-score cutoffs. Thereby, these studies pro-

vide estimates for students who are on the margin of admission. However, if the effect of elite

schools is heterogeneous, existing estimates may not be informative for parents, who would

be interested in the effect for the average elite-school student with similar characteristics to

theirs.

This paper studies the effects of elite schools on academic achievement in Hungary. Merit-

based admission combined with high demand implies that elite-school students have high-

achieving peers. Elite schools offer a more advanced, higher-paced curriculum, and teachers

of high-qualification. Moreover, elite-school enrollment entails early switching to a secondary

grammar school. Using administrative data, our study examines how enrollment in an elite

school affects elite-school students’ short- and medium-run academic achievement. Moti-

vated by the potential heterogeneity in the effectiveness of elite schools, we conduct our

analysis by gender and baseline ability (Oosterbeek et al., 2020).

Our main empirical strategy identifies the effects of enrollment in an elite school using

non-parametric bounds. Our non-parametric bounds approach builds on a weak stochastic

dominance assumption. We assume that conditional on observable student characteristics

more able students are more likely to enroll in an elite school (conditional Monotone Treat-

ment Selection, MTS; see Manski and Pepper, 2000; de Haan, 2011). The conditional MTS

assumption yields an upper bound on the average treatment effect on the treated (ATET). We

estimate the effect of elite-school enrollment throughout the outcome distribution, thus, we

can study whether the effects differ between the top and the bottom end of the outcome
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distribution (de Haan and Leuven, 2020).

The non-parametric bounds approach offers several advantages. First, our approach iden-

tifies the effect of elite-school enrollment for elite-school students, and not only for students

on the margin of admission. Second, the conditional MTS assumption is consistent with elite

schools’ admission policy and yields testable implications.

We find that enrollment in an elite school has a negative effect on female and low-ability

elite-school students’ mathematics test scores two years after enrollment. Elite-school en-

rollment reduces the probability of scoring above the median in mathematics by more than

7.5 percentage points, corresponding to 30 percent, for low-ability female students, and by

more than 1 percentage points, corresponding to 10 percent, for low-ability male students.

For high-ability female students, we find that elite-school enrollment reduces the probability

of scoring in the top 10 percent in mathematics by more than 2 percentage points, corre-

sponding to 10 percent. We argue that our findings for female and low-ability students are

not the consequence of grading policies (e.g., ceiling effects, grading on a curve), but they

reflect negative effects on skill formation. By contrast, we cannot rule out positive effects for

high-ability male students at the upper half of the outcome distribution.

We next investigate whether the negative short-run effects persist four years after enroll-

ment. We find that the upper bounds are positive and relatively large in magnitude for each

ability and gender group. Thus, our non-parametric bounds strategy is uninformative about

the sign of the effect on the medium run.

We further examine the medium-run effects of elite-school enrollment using a comple-

mentary empirical strategy. Using the selection on observables assumption, we estimate

school value-added models to identify the average treatment effect on the treated. Our school

value-added models control for students’ lagged test scores and well as a rich set of student

and school characteristics. We find that elite-school enrollment has a positive effect elite-

school students’ mathematics and reading test scores on the medium run. Even if the school

value-added and non-parametric bounds empirical strategies build on different identifying

assumptions, reassuringly, the school value-added estimates are always consistent with our

non-parametric bounds on the effect of elite schools.

Our paper contributes to the understanding of the effectiveness of elite schools in a num-

ber of ways. First, numerous studies examine the effects of elite schools (or attending a
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better school) using regression discontinuity design (RDD) in settings where admission is

merit-based (Jackson, 2010; Clark, 2010; Pop-Eleches and Urquiola, 2013; Bui et al., 2014;

Lucas and Mbiti, 2014; Abdulkadiroglu et al., 2014; Dobbie and Fryer, 2014; Anderson et al.,

2016; Barrow et al., Forthcoming).1 These RDD estimates are informative for students who

are on the margin of admission. Instead, our study focuses on the effect for the average stu-

dent, and thus complements this literature. Moreover, these RDD studies have limited ability

to identify heterogeneous effects by student ability, since student ability varies little at the

margin of admission (Oosterbeek et al., 2020). By contrast, our identification strategy allows

us to estimate the effect for different ability groups. When we split the sample by baseline

ability, our estimates suggest that the benefits of elite schools are concentrated on high-ability

students. When looking at the outcome distribution, our estimates indicate that the benefits

of elite schools materialize at the top of the outcome distribution.

Second, our paper studies the effect of elite-school enrollment on outcomes that are mea-

sured in different points in time. Documenting how the effects of elite school enrollment

change over time is important, since behavioral responses of students, teachers, or parents

may materialize on different time horizons (Pop-Eleches and Urquiola, 2013). We show that

elite-school enrollment has a negative effect on female and low-achieving students’ mathe-

matics score on the short run. This finding suggests that it more costly for certain groups of

students to adjust to the elite-school environment.

Finally, we also contribute to the studies evaluating the performance of Hungarian elite

schools. In the same context as ours, Horn (2013) finds positive, albeit, imprecisely estimated

effects of selective secondary-school attendance on short-run academic achievement. Using

less stringent identifying assumptions, our study considerably narrows the upper bound on

these estimates.

The remainder of the paper is organized as follows. Section 2 provides background infor-

mation about Hungarian education and the organization of elite schools. Section 3 describes

1A very much related literature studies elite-school effectiveness (or the effects of attending a better school)
in settings where a lottery-based admission system is in place (e.g., Cullen et al., 2006; Deming, 2011; Dobbie
and Fryer, 2011; Oosterbeek et al., 2020). Our study is similar to these papers in a sense that it identifies the
effect of elite-school enrollment away from the priority-score cutoff. A key difference is that admission is merit-
based in our setting, which implies that elite-school students are more selected that those who are admitted in
a lottery-based admission system.
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our data and provides summary statistics. Section 4 discusses our empirical strategies and

presents the results of our validity checks. Section 5 presents our results. Section 6 concludes.

2 Context: Elite schools in Hungary

This section describes the institutional details of elite schools in Hungary. We describe admis-

sion to elite schools and detail the treatment.

Students begin primary education at age 6 in Hungary. After eight years in primary

schools, they transition to secondary education. Secondary education is tracked in Hungary:

students may choose a secondary grammar school, which has a more academic orientation

and prepares students for higher education, or students may choose a vocational school,

which has a less academic orientation and gives a vocational degree (see Table 1). Primary

and secondary education are organized together in some schools. That is, in these compre-
hensive schools, students do not switch school when they transition from primary to secondary

education. Even in these comprehensive schools, students are required to do the admission

exam to proceed on the secondary track.

Primary-school students, at the end of grade 6, may decide to enroll in the 6-years long

academic track of a secondary grammar school. We label these 6-years long academic tracks

as elite schools. These elite schools are typically separate classes in a secondary grammar

school, which have regular tracks as well. Thus, an elite school is essentially an “elite track”

in a secondary grammar school (cf. Pop-Eleches and Urquiola, 2013).2

Admission to elite schools is merit-based. Elite schools organize admission exams where

students have to solve numeracy and literacy tests. While all applicants solve the same test in

the country, the priority-score formula used for the actual rankings is school-specific: it is a

combination of the students’ primary-school grades, the result of their written admission test,

and the result of their oral admission exam. Since elite schools are highly oversubscribed,

they are highly selective, and only high-achieving students are admitted.

Enrollment in an elite school is a composite treatment. First, elite-school students have

2Some of the secondary grammar schools offer a 8-years long academic track. Due to data limitations we do
not study these 8-years long academic tracks, and drop students who enrolled in these 8-years long academic
tracks from all of our samples.
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Table 1: The overview of the education system in Hungary
Grade 1–4 5–6 7–8 9–12
Age 6–9 10-11 12–13 14–17

Path

Regular track in a secondary grammar school

Primary school
Vocational school

6-years long academic track in a secondary grammar school (elite school)
8-years long academic track in a secondary grammar school (excluded)

Notes: The table provides an overview of the education system in Hungary. The regular and the 6-years
long academic tracks take place in secondary grammar schools. We refer to the 6-years long academic
track in a secondary grammar school as an elite school. We exclude the 8-years long academic track
from our analysis.

academically stronger peers, which follows from the combination of merit-based admission

and the high demand. Second, elite-school students enter the secondary education envi-

ronment sooner than non-elite-school students. Teachers in secondary schools are typically

more qualified than primary school teachers, and they are more experienced with more ma-

ture students. Third, elite schools offer a more advanced, higher-paced curriculum. Finally,

elite-school students switch school at age 12. By contrast, students who do not enroll in an

elite school attend their primary school for an additional 2 years, and switch only at age 14.

3 Data and summary statistics

This section describes the data we use to estimate the effect of enrollment in an elite school

on elite-school students’ academic achievement. We begin, in Section 3.1, by describing the

data and discussing the construction of our samples. In Section 3.2, we present summary

statistics showing that elite-school students are positively selected based on socioeconomic

status and academic achievement, and that the peer quality of elite-school students is better

than those of non-elite-school students.

3.1 Data

For the analysis, we use administrative data from the National Assessment of Basic Compe-

tencies (NABC). Our data are longitudinal and cover every student in grades 6, 8, and 10 in

the period of 2008–2014.
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The backbone of our administrative data are the standardized test scores of the NABC.

The NABC is similar to OECD’s Programme for International Student Assessment (PISA), but

it extends to every student in grades 6, 8, and 10. The NABC (and the corresponding survey

on students’ background) is conducted annually in the last week of May. The NABC measures

students’ mathematics and reading skills. Students’ 6th-grade test scores are measured on a

scale, which has a mean of 1,500 and standard deviation of 200. In grades 8 and 10, the test

scores are standardized in a way, such that the test scores are comparable over time (e.g.,

a student’s 6th-grade and 8th-grade test scores are comparable) and across cohorts (e.g.,

the average test scores in grade 8 are comparable across cohorts). The standardized test

scores differ from students’ school-grades in many aspects: the standardized test scores are

of low-stakes, they are graded blindly and externally, and they are not top-coded.3

Our data also include information on students’ demographics (gender), socioeconomic

status (the number of books at home, disadvantaged status, and parental education), and

schools (school identifiers in grades 6, 8, and 10, school type, the county of the school,

and the type of the settlement where the school is located). We also have rich information

on students’ academic achievement. Our data also include students’ GPA in grade 5, i.e.,

one year prior the students’ first NABC taking place. Finally, our data have information on

students’ 8th-grade mathematics grade.4 These grades are given by students’ own teachers

and they are measured on a scale of 1 to 5.

We study two (overlapping) samples in order to maximize the power of our analysis.

When studying short-run outcomes (i.e., outcomes measured 2 years after elite-school en-

rollment), we focus on students who we observe in grades 6 and 8. We refer to this sample

as the 8th-grade sample. The 8th-grade sample consists of five cohorts, whose 8th-grade

outcomes are measured in the period of 2010–2014. When studying medium-run outcomes

(i.e., outcomes measured 4 years after elite-school enrollment), we focus on students who

we observe in grades 6, 8, and 10. We refer to this sample as the 10th-grade sample. The

10th-grade sample consists of three cohorts, whose 10th-grade outcomes are measured in the

period of 2012–2014.

3Figure 3 presents the cumulative distribution function of students’ 6th-grade mathematics and reading test
scores.

4Information on students’ socioeconomic status (number of books at home and parental education) and their
school grades (5th-grade GPA and 8th-grade mathematics grade) is self-reported.
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In our analysis we make a number of sample restrictions to focus on students for whom

enrolling in an elite school is a viable option. First, we focus on students’ with a complete

academic path with no missing information. Second, our samples include students who are

enrolled either in an elite or in a primary school in grade 8. Third, we focus on students whose

propensity to enroll in an elite school is non-negligible. Therefore, our samples only include

students (1) whose 5th-grade GPA is at least 4, (2) whose 6th-grade mathematics grade is

at least 3, and (3) who attend a primary school in grade 6 from which at least one student

enrolled in an elite school in our sample period. Appendix Table C1 provides information on

the sample size reduction for each sample restriction. After the sample restrictions, we end

up with about 25,000 students in each cohort (approximately 25% in each cohort).

In our analysis, we standardize students’ test scores on our restricted samples. We conduct

our analysis for four student groups, defined by (baseline) ability and gender, separately. We

refer to students whose 6th-grade standardized test score is below the sample median as low-
ability students, and whose 6th-grade standardized test score is above the sample median as

high-ability students.

3.2 Summary statistics

Table 2 presents summary statistics of student characteristics by elite-school enrollment for

each of our samples. Panel A focuses on students’ pre-treatment characteristics. About 55

percent of the students are female. Approximately 37 percent of the students has maximum

150 books at home, 37 percent has between 150 and 600 books at home, and 27 percent has

more than 600 books at home. On average, students’ 5th-grade GPA is 4.6, on a scale of 1 to

5.5 The composition of the 8th-grade and 10th-grade samples are almost identical.

Out of the 126,196 students in the 8th-grade sample, 16,702 students (13.2 percent) en-

rolled in an elite school. Students who enrolled in an elite school have higher socioeconomic

status: about 45 percent of elite-school students has more than 600 books at home compared

to 24 percent of those who did not enroll in an elite school. Elite-school students’ 6th-grade

mathematics (reading) test score is higher than the sample average by 53 (50) percent of a

5The relatively high average 5th-grade GPA follows from the fact that our samples include students whose
5th-grade GPA is at least 4; see Section 3.1.
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standard deviation. By contrast, students who did not enroll in an elite school have a 6th-

grade test score that is by 6 percent of a standard deviation lower than the sample average in

both subjects. These patterns indicate that elite-school students are positively selected based

on their socioeconomic status and (baseline) academic achievement.

Panel B of Table 2 reports summary statistics on students’ outcomes. On average, stu-

dents’ 8th-grade mathematics grade is 4.0. Elite-school and non-elite-school students’ aver-

age 8th-grade mathematics grades are similar. By contrast, elite-school students’ 8th-grade

standardized test scores are considerably higher than those of non-elite-school students. For

example, elite-school students’ average 8th-grade mathematics test score is 36 percent of a

standard deviation higher the sample average. Non-elite-school students’ average 8th-grade

mathematics test score is 6 percent of a standard deviation lower than the sample aver-

age. Summary statistics of the 10th-grade sample indicate that elite-school students’ average

10th-grade mathematics test score is 58 percent of a standard deviation higher the sample

average. By contrast, non-elite-school students’ average 10th-grade mathematics test score

is 8 percent of a standard deviation lower than the sample average. These patterns indicate

that the differences in standardized scores between elite-school and non-elite-school students

persist up until 4 years after elite-school enrollment.
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Table 2: Summary statistics

8th-grade sample 10th-grade sample

Elite-school
students

Non-elite-school
students Total

Elite-school
students

Non-elite-school
students Total

(1) (2) (3) (4) (5) (6)

A. Pre-treatment characteristics
Female 0.54 0.56 0.55 0.54 0.56 0.55

(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Max. 150 books at home 0.19 0.39 0.37 0.17 0.36 0.33

(0.39) (0.49) (0.48) (0.37) (0.48) (0.47)
B/w 150 and 600 books at home 0.36 0.37 0.37 0.34 0.37 0.37

(0.48) (0.48) (0.48) (0.47) (0.48) (0.48)
More than 600 books at home 0.45 0.24 0.27 0.49 0.27 0.30

(0.50) (0.43) (0.44) (0.50) (0.45) (0.46)
5th-grade GPA (1–5) 4.77 4.55 4.58 4.78 4.57 4.59

(0.28) (0.34) (0.34) (0.28) (0.34) (0.34)
6th-grade mathematics test score (std.) 0.53 -0.08 0.00 0.56 -0.08 0.00

(1.01) (0.97) (1.00) (1.02) (0.97) (1.00)
6th-grade reading test score (std.) 0.50 -0.08 0.00 0.51 -0.07 -0.00

(0.96) (0.98) (1.00) (0.96) (0.99) (1.00)

B. Outcomes
8th-grade mathematics grade (1–5) 4.04 3.98 3.99 . . .

(0.87) (0.88) (0.88) ( .) ( .) ( .)
8th-grade mathematics test score (std.) 0.36 -0.06 0.00 . . .

(1.01) (0.99) (1.00) ( .) ( .) ( .)
8th-grade reading test score (std.) 0.42 -0.06 0.00 . . .

(0.95) (0.99) (1.00) ( .) ( .) ( .)
10th-grade mathematics test score (std.) . . . 0.58 -0.08 0.00

( .) ( .) ( .) (0.98) (0.98) (1.00)
10th-grade reading test score (std.) . . . 0.53 -0.07 -0.00

( .) ( .) ( .) (0.91) (0.99) (1.00)

Number of students 16,702 109,494 126,196 8,850 63,112 71,962

Notes: The table presents the means and standard deviations of student characteristics for each sample. Columns (1) and (4) focus on
students who did not enroll in an elite school, columns (2) and (5) focus on students who enrolled in an elite school, and columns (3)
and (6) focus on the entire sample.
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Figure 1 presents the distribution of students’ peer quality, which is the leave-out mean of

peers’ 6th-grade standardized test scores within a school. The figure displays the distribution

of peer quality before and after elite-school enrollment, i.e., in grades 6 and 8. We present

these distributions for elite-school and non-elite-school students separately, and for students’

6th-grade mathematics and reading test scores.6

The left panels of Figure 1 show that the peer quality distribution of elite-school students

shifts to the right between grades 6 and 8. The average 6th-grade mathematics test score of

elite-school students’ peers in grade 6 is 1,530. By contrast, the average 6th-grade mathe-

matics test score of elite-school students’ peers in the elite school is 1,671. Thus, elite-school

students’ peer quality substantially improves after they enroll in an elite school.

The right panels of Figure 1 show that the peer quality distribution of non-elite-school

students largely remain unchanged between grades 6 and 8. The average 6th-grade math-

ematics test score of non-elite-school students’ peers in grade 6 is 1,512 and it is 1,501 in

grade 8. This small reduction in the peer quality of non-elite school students is consistent

with positive selection into elite schools.7 We also note that elite-school students’ peer qual-

ity considerably exceeds the the peer quality of non-elite-school students in grade 8. Thus,

enrollment in an elite school entails having academically stronger peers.

4 Empirical strategies

This section discusses our empirical strategies to identify the effect of enrollment in an elite

school on the outcome distribution. We begin, in Section 4.1, by deriving a non-parametric

bound on the effect of enrollment in an elite school using a weak stochastic dominance

assumption (conditional Monotone Treatment Selection). In Section 4.2, we present evidence

supporting the validity of our identifying assumption. Finally, in Section 4.3, we discuss a

complementary empirical strategy that builds on the selection on observables assumption.

6When we compute students’ peer quality, we include all students in the calculations. Therefore, in Figure 1,
we preserve the original scale of students’ 6th-grade standardized test scores; see Section 3.1.

7In the same context, Schiltz et al. (2019) show that the departure of smart peers to elite schools has a small,
negative effect on the academic achievement of students who are left behind.
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Figure 1: Peer quality and elite-school enrollment
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Notes: The figure shows the distributions of students’ peer quality in grades 6 and 8. Peer quality is the leave-out
mean of peers’ 6th-grade standardized test scores (within school). The left (right) panels focus on elite-school
(non-elite-school) students. The top (bottom) panels focus on peers’ 6th-grade mathematics (reading) test
scores.

4.1 Non-parametric bounds: conditional MTS throughout the outcome

distribution

We are interested in the effect of enrollment in an elite school on elite-school students’ out-

comes, that is, we focus on the the average treatment effect on the treated (ATET). We study

the entire distribution of potential outcomes. Thus, the causal effect of interest, denoted

by τ(γ), is the effect of elite-school enrollment on the probability of obtaining an outcome

greater than γ for students who enrolled in an elite school:

τ(γ) = P [Y(1) ≥ γ|D = 1]−P [Y(0) ≥ γ|D = 1] ,

where we denote student i’s potential outcome by Yi(D) and D takes a value of one if the

student enrolled in an elite school and zero otherwise.

The causal effect of interest focuses on students who enrolled in an elite school. This
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means that we identify the effect not only for students on the margin of admission, as studies

that exploit priority-score cutoffs, but also for inframarginal students. Thus, we address

whether elite schools academically benefit students who enrolled in them, and not weather

the expansion of elite-school capacities benefits marginally admitted students.

The identification problem is that the potential untreated outcome distribution of students

who enrolled in an elite school is unobservable. Therefore, we make an assumption on the

selection of students into elite schools. Specifically, we impose a weak stochastic dominance

condition on the potential untreated outcome distribution of students who enrolled in an

elite school.

Assumption 1 (Monotone Treatment Selection, MTS). The distribution of potential un-

treated outcomes of students who enrolled in an elite school weakly dominates that of those

who did not enroll in an elite school:8

P [Y(0) ≥ γ|D = 1] ≥ P [Y(0) ≥ γ|D = 0] , ∀γ. (MTS)

The MTS assumption implies that the effect of enrollment in an elite school does not exceed

the difference between the (observed) outcome distributions of students who enrolled in an

elite school and of those who did not enroll:

τ(γ) = P [Y(1) ≥ γ|D = 1]−P [Y(0) ≥ γ|D = 1]

≤ P [Y(1) ≥ γ|D = 1]−P [Y(0) ≥ γ|D = 0] .

We further sharpen the upper bound on the effect of enrollment in an elite school by

assuming that the MTS assumption holds for certain subgroups of students.

Assumption 2 (conditional MTS). The distribution of potential untreated outcomes of stu-

dents who enrolled in an elite school weakly dominates that of those who did not enroll in

an elite school conditional on each values of the variable of X:

P [Y(0) ≥ γ|D = 1, X] ≥ P [Y(0) ≥ γ|D = 0, X] , ∀γ. (conditonal MTS)
8Our MTS assumption requires stochastic dominance of the potential outcome distributions, and thus is

stronger than the MTS assumption originally proposed by Manski and Pepper (2000).
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In the analysis, for a given value of γ, we use the conditional MTS assumption to derive

bounds on P [Y(0) ≤ γ|D = 1, X] for each values of X. We then combine these bounds to

obtain an upper bound on the causal effect of interest:9

τ(γ) ≤ ∑
x∈X

(P [Y(0) ≤ γ|D = 0, X = x]−P [Y(1) ≤ γ|D = 1, X = x])P [D = 1|X = x] ∀γ.

The upper bound on the effect of enrollment in an elite school equals to the corresponding

exact matching estimator (Rubin, 1973). The exact matching estimator identifies the effect of

enrollment in an elite school on the treated under the Conditional Independence Assumption

(CIA). Instead of maintaining the CIA, we assume that selection into an elite school is positive

conditional on X, and thus we identify an upper bound on the causal effect of interest.

We estimate the non-parametric bound on τ(γ) by the corresponding sample means and

empirical probabilities. The 95% confidence intervals on the causal effect of interest are

based on 1,000 bootstrap replications using the methodology derived by Imbens and Manski

(2004).

We combine two pre-treatment variables, students’ 5th-grade GPA and the number of

books at home, to sharpen the bounds on the effect of enrollment in an elite school. We

assume that conditional on students’ 5th-grade GPA and the number of books at home the

potential untreated outcome distribution of students who enrolled in an elite school weakly

dominates of those who did not enroll in an elite school. Since admission to elite schools is

merit-based, elite-school students are positively selected. Consistent with the merit-based ad-

mission procedure, we assume that positive selection is present even conditional on students’

5th-grade GPA, which is a pre-treatment proxy of students’ academic ability, and the number

of books at home, which is a proxy of socioeconomic status. The next section presents evi-

dence using pre-treatment outcomes to support the validity of our identifying assumptions.10

9Since we investigate the effect of enrollment in an elite school on the entire outcome distribution, we could
derive a no-assumption lower bound on τ(γ). This lower bound is, by construction, never positive, thus we do
not report it.

10Students’ 5th-grade GPA and the number of books at home are likely to be positively related to students’
potential outcome distribution, and thus are valid monotone instrumental variables (MIVs) (Manski and Pepper,
2000; de Haan, 2011). We find empirical support for the combination of students’ 5th-grade GPA and the
number of books at home being valid MIVs. However, consistent with the argument of Richey (2016), the
combination of the conditional MTS and MIV assumptions does not tighten our bounds.
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4.2 Validity check

We next assess the validity of the conditional MTS assumption for the interaction of students’

5th-grade GPA and the number of books at home. A prerequisite of the conditional MTS

assumption is a sufficient overlap between elite-school and non-elite-school students for each

value of the interaction of students’ 5th-grade GPA and the number of books at home (cf.

Common Support Assumption). Moreover, if the conditional MTS assumption is met, then

the distribution of elite-school students’ pre-treatment outcomes should weakly dominate

those of non-elite-school students’ pre-treatment outcomes. We use students’ 6th-grade stan-

dardized test score, which is realized prior to elite-school enrollment, to test this implication.

We first provide evidence supporting the overlap between elite-school and non-elite-

school students’ characteristics. Figure 2 presents the share of students who enrolled in an

elite school for each value of the combination of 5h-grade GPA and the number of books at

home. The figure splits the sample by (pre-treatment) ability and gender. There is no combi-

nation of 5th-grade GPA and the number of books at home such that the share of elite-school

students is below 1 percent.11

We next provide graphical evidence supporting the MTS assumption. Figure 3 displays

the distribution of students’ 6th-grade standardized test scores by elite-school enrollment and

gender. The figure shows that the 6th-grade test score distribution of students who enrolled

in an elite school weakly dominates of those who did not enroll for each gender and test type

(mathematics and reading).

Figure 4 presents a formal test of the validity of the conditional MTS assumption. For

each value of the combination of students’ 5th-grade GPA and the number of books at home,

we perform a one-sided Kolgomorov-Smirnov test. Figure 4 presents the corresponding p-

values of the Kolgomorov-Smirnov test by gender and pre-treatment ability for each value

of the combination of 5th-grade GPA and number of books at home. Out of the 264 tests

we perform, we reject the null hypothesis only 6 times at a 10 percent significance level.

We interpret these results as strong evidence supporting the validity of the conditional MTS

assumption.12

11Appendix Figure A1 provides the same information for the 10th-grade sample, with the same conclusion.
12Appendix Figure A2 provides evidence supporting the validity of the conditional MTS assumption for the

10th-grade sample.
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Figure 2: Validity check: Elite-school enrollment and student characteristics
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Notes: The figure presents the share of students who enrolled in an elite school by student characteristics. Each
cell shows the share of elite-school students for a combination of 5th-grade GPA and the number of books at
home. In the top panels (bottom) high-ability/low-ability is defined as having 6th-grade mathematics (reading)
test score above/below the median. Sample: 8th-grade sample, N = 126,196.

4.3 School value-added

The non-parametric bound approach offers several advantages (e.g., mild identifying assump-

tions with testable implications), however, its ability to recover informative estimates may be

limited. Therefore, we consider a complementary empirical strategy, which builds on selec-

tion on observables—a more demanding assumption.

Assumption 3 (Selection on observables).

P [Y(d) ≥ γ|D = d, Z] = α
γ
d + β

γ
d Z, d = 0, 1; ∀γ,

where Z is a vector of variables.

The selection on observables assumption provides point identification for the causal effect
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Figure 3: Validity-check: The distribution of students’ 6th-grade standardized test scores by
elite-school enrollment

Female Male

M
ath

R
eading

−4 −2 0 2 4 −2.5 0.0 2.5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

6th−grade test score (std.)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Elite−school students Non−elite−school students

Notes: The figure displays the cumulative distribution function of students’ 6th-grade standardized test score by
elite-school enrollment and gender. The left (right) panels present the distributions for female (male) students.
The top (bottom) panels present the distribution of the 6th-grade mathematics (reading) test scores.

of interest:

τ(γ) = ∑
z∈Z

(
α

γ
1 − α

γ
0 + (β

γ
1 − β

γ
0 )z

)
P [D = 1|Z = z] .

The selection on observables assumption ensures that an ordinary least squares (OLS) re-

gression of Yi on an indicator of elite-school enrollment interacted with Zi recovers unbiased

estimates of α
γ
d and β

γ
d . We consider two specifications. First, the vector Z includes students’

6th-grade standardized test scores and cohort fixed effects (simple model). Second, the vector

Z includes additional covariates, such as 5th-grade GPA, number of books at home, educa-

tion of the mother, education of the father, being disadvantaged, the county of the school,

and the type of the residence where the school is located (full model).13 Both specifications

resemble the commonly used “school value-added” approach to evaluate the effectiveness of

13Appendix C describes the construction of our variables, and Appendix Table A1 presents summary statistics
of the additional covariates of the school value-added specifications.
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Figure 4: Validity-check: The p-values of the Kolgomorov-Smirnov test
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Notes: The figure displays the p-values of the one-sided Kolgomorov-Smirnov test. The Kolgomorov-Smirnov
test tests the equality of the distributions of elite-school and non-elite-school students’ 6th-grade standardized
test scores. Each cell shows the p-value for a combination of 5th-grade GPA and the number of books at home.
In the top panels (bottom) high-ability/low-ability is defined as having 6th-grade mathematics (reading) test
score above/below the median. Sample: 8th-grade sample, N = 126,196.

schools (Koedel et al., 2015).

The plausibility of the selection on observables assumption is debated in the context of

school value-added (school VA) estimates (see e.g., Chetty et al., 2014a,b; Guarino et al.,

2015; Rothstein, 2010, 2017). For elite schools in Amsterdam, Oosterbeek et al. (2020) finds

that school value-added estimates are severely biased when they are compared to admission

lottery-based estimates. In the context of Hungarian elite schools, we view the school value-

added estimates complementary to our non-parametric bound approach. We note that when

the selection on observables assumption is violated, the direction of the bias of the school

value-added estimate is unclear. Therefore, the school value-added estimates might be less

informative about our causal effect of interest than the non-parametric bounds.
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5 Results

This section presents our results. We begin, in Section 5.1, by showing that enrollment in

an elite school has a negative effect on the short-run academic achievement of female and

low-ability students. In Section 5.2, we show that our non-parametric bounds strategy cannot

rule out moderately positive effects on academic achievement 4 years after enrollment. Fi-

nally, in Section 5.3, using value-added models, we show that elite schools improve students’

academic achievement 4 years after enrollment.

5.1 Short-run academic achievement

We begin by studying the effect of enrollment in an elite school on elite-school students’ 8th-

grade mathematics grade. Figure 5 displays the upper bounds on the causal effect of interest,

split by ability and gender.14 The figure also displays the raw (unconditional) differences

between the outcomes of elite-school and non-elite school students for each group.

Figure 5 shows that the upper bounds are negative throughout the outcome distribution

for each gender–ability group. For example, enrollment in an elite school decreases the prob-

ability of having an 8th-grade mathematics grade larger than 4.5 by at least 15 percentage

points for high-ability male students. The upper bound of 15 percentage points corresponds

to a 21 percent relative decrease (Appendix Figure B1). For high-ability students, the upper

bounds are the lowest at the top of the distribution. The upper bounds of the causal effect

are considerably lower than the unconditional differences, which is consistent with positive

selection into elite schools.

The negative upper-bound estimates on students’ 8th-grade mathematics grade do not

necessarily reflect negative effects on students’ skill formation. Alternative explanations are

ceiling effects, grading on a curve (Calsamiglia and Loviglio, 2019), or more demanding study

requirements in elite schools. To rule out these alternative explanations, we next examine

the effect of elite schools on students’ 8th-grade standardized test scores. This test score is

14The figure also displays the 95% confidence intervals on the causal effect of interest. Since we present the
upper bound estimates of the causal effect exclusively, we mark the area between the upper confidence band
and the estimate itself (shaded area).
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not top-coded, blindly graded, and standardized nationwide, therefore, it is not susceptible

to the above mentioned alternative explanations.

Figure 5: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade mathematics grade
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Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 8th-grade mathematics grade (solid lines). The dashed line denotes the raw difference
between the outcomes of elite-school and non-elite-school students. We report the estimates separately by
gender and low- and high-ability students. Low- and high-ability students are defined by whether the students’
6th-grade mathematics test score is below or above the median. Students’ 6th-grade mathematics grade is
measured on the scale of 1–5. The shaded area represents the area between the upper confidence band (95%)
and the upper bound estimate itself. The 95% confidence intervals are based on 1,000 bootstrap draws. Sample:
8th-grade sample, N = 126,196.

Figure 6 presents the upper bounds on the effect of enrollment in an elite school on the

distribution of 8th-grade standardized test scores. The figure displays the upper bounds on

the deciles of the distribution of students’ mathematics and reading test scores.15

The figure shows that enrollment in an elite school has a negative effect on female and

low-ability elite-school students’ mathematics test scores two years after enrollment. Elite-

school enrollment reduces the probability of scoring above the median in mathematics by

15To simplify the exposition, Figure 6 displays the bounds only on the bottom- and top-6 deciles of the
outcome distribution of low- and high-ability students, respectively.
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more than 7.5 percentage points, corresponding to 30 percent, for low-ability female stu-

dents, and by more than 1 percentage points, corresponding to 10 percent, for low-ability

male students. For high-ability female students, we find that elite-school enrollment reduces

the probability of scoring in the top 10 percent in mathematics by more than 2 percentage

points, corresponding to 10 percent (Appendix Figure B2). The figure also shows that enroll-

ment in an elite school does not meaningfully increase the 8th-grade mathematics test scores

of low-ability male students. The upper bounds are actually negative for the fourth and fifth

deciles of the outcome distribution. If anything, elite-school enrollment may only raise high-

achieving male students’ mathematics test score at the top of the outcome distribution, by at

most 2–5 percentage points.

The bottom panels of the figure show the effect of enrollment in an elite school on stu-

dents’ 8th-grade reading test scores. We find that the effect is negative for low-ability female

students. The bounds do not exclude positive effects for male and high-achieving female

students.

A potential mechanism underlying the negative short-run effects is that elite-school stu-

dents switch schools, and it may take time for them to adapt to the new environment. We test

this hypothesis by conducting a heterogeneity analysis. To this end, we focus on elite-school

students who attend a comprehensive school, and thus enrollment in an elite school does

not involve switching schools. Figure 7 presents the estimates for this subsample of students.

The upper bounds are negative for both male and female students (irrespective of ability) in

mathematics. These results suggest that the fact that students in the comparison group do

not switch school does not drive our short-run results.16

5.2 Medium-run academic achievement

Having found that enrollment in an elite school has a negative effect on female and low-

ability students’ 8th-grade mathematics test score, we next investigate whether these negative

effects persist in grade 10. Figure 8 presents the upper bounds on the effect of enrollment in

an elite school on the distribution of 10th-grade test scores. We find that the upper bounds

16Appendix Figure A3 shows the estimates for elite-school students who did switch to an elite school. The
estimates are largely similar to those presented in Figure 6.
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Figure 6: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade standardized test scores

Low ability High ability

M
ath

R
eading

0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.5 0.6 0.7 0.8 0.9

−0.05

0.00

0.05

0.10

0.15

0.00

0.04

0.08

0.12

P(score ≥ di)

E
ffe

ct
 o

f e
lit

e 
sc

ho
ol

s

Female Male raw difference upper bound

Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 8th-grade mathematics grades (solid lines). The dashed line denotes the raw difference
between the outcomes of elite-school and non-elite-school students. We report the estimates separately by
gender and low- and high-ability students. Low- and high-ability students are defined by whether the students’
6th-grade standardized test score is below or above the median. The shaded area represents the area between
the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals are based
on 1,000 bootstrap draws. Sample: 8th-grade sample, N = 126,196.

are positive, and relatively large in magnitude, for each subgroup and test (mathematics and

reading). These findings are consistent with negative as well as substantial positive effects,

and therefore they are inconclusive about the question whether the short-run negative effects

persist.

A potential explanation for the high upper bounds is that students who did not enroll in

an elite school attend low value-added schools. This concern, for example, is particularly

pronounced for vocational schools, whose curriculum has less of an academic orientation.

We thus focus on the subset of secondary grammar schools that have elite school tracks and

regular tracks as well (see Table 1). Figure 9 presents the upper bounds on this subset of

secondary grammar schools. We find that the upper bounds are positive, but considerably

lower than the ones presented in Figure 8. For example, the upper bound on the effect of

22



Figure 7: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade standardized test scores: Comprehensive schools
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Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 8th-grade standardized test scores (solid lines). The dashed line denotes the raw differ-
ence between the outcomes of elite-school and non-elite-school students. We report the estimates separately by
gender and low- and high-ability students. Low- and high-ability students are defined by whether the students’
6th-grade standardized test score is below or above the median. The shaded area represents the area between
the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals are based
on 1,000 bootstrap draws. Sample: 8th-grade sample – comprehensive schools, N = 111,501.

having a mathematics test score in the top decile for high-ability male students drops from

12.5 to 6 percentage points. These findings indicate that low value-added secondary-schools

(e.g., vocational schools) do not drive the positive upper bounds. Yet, these bounds do not

reveal whether the negative effects of elite schools persist.

5.3 School value-added

As our non-parametric bounds strategy is inconclusive about the sign of the effects of elite-

school enrollment in the medium run, we turn to the results of our school value-added mod-

els. Figure 10 presents the school value-added estimates for students’ 8th-grade standard-

ized test scores, in each gender–ability group using two alternative specifications. The simple
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Figure 8: The effect of elite-school enrollment on the distribution of elite-school students’
10th-grade standardized test scores

Low ability High ability

M
ath

R
eading

0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.5 0.6 0.7 0.8 0.9

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

P(score ≥ di)

E
ffe

ct
 o

f e
lit

e 
sc

ho
ol

s

Female Male raw difference upper bound

Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribu-
tion of elite-school students’ 10th-grade standardized test scores (solid lines). The dashed line denotes the raw
difference between the outcomes of elite-school and non-elite-school students. We report the estimates sepa-
rately by gender and low- and high-ability students. Low- and high-ability students are defined by whether the
students’ 6th-grade standardized test score is below or above the median. The shaded area represents the area
between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals
are based on 1,000 bootstrap draws. Sample: 10th-grade sample, N = 71,962.

model controls for students’ 6th-grade standardized test score and cohort fixed effects. The

full model adds additional controls for student and school characteristics (see Section 4.3).

The figure corroborates that enrollment in an elite school has a negative effect on female

elite-school students’ 8th-grade mathematics test scores throughout the outcome distribution.

The simple model shows that enrollment in an elite school decreases the probability of having

a mathematics test score above the median by 5 percentage points for low-ability, and 3

percentage points for high-ability female students. The full model with additional covariates

suggests that the effect is about minus 7.5 percentage points for low-ability, and minus 8

percentage points for high-ability female students. The negative relative effect of elite-school

enrollment is larger for low-ability female students and at the top of the outcome distribution

(Appendix Figure B6).
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Figure 9: The effect of elite-school enrollment on the distribution of elite-school students’
10th-grade standardized test scores: Elite-school subsample
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Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribu-
tion of elite-school students’ 10th-grade standardized test scores (solid lines). The dashed line denotes the raw
difference between the outcomes of elite-school and non-elite-school students. We report the estimates sepa-
rately by gender and low- and high-ability students. Low- and high-ability students are defined by whether the
students’ 6th-grade standardized test score is below or above the median. The shaded area represents the area
between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals
are based on 1,000 bootstrap draws. Sample: 10th-grade sample – elite-school subsample, N = 21,384.

Figure 10 also reiterates that elite-school enrollment does not meaningfully increase the

8th-grade mathematics test scores of low-ability male students. The estimates of the simple

school VA model are close to zero for both low- and high ability male students throughout

the entire outcome distribution. The full model with additional covariates indicates that the

effect is negative. Similar to female students, we find that the size of the relative effects are

larger for low-ability male students relative to high-ability male students, and at the top of

the outcome distribution (Appendix Figure B6).

The school value-added estimates are less robust when we study the effect of elite-school

enrollment on elite-school students’ 8th-grade reading scores. The simple model yields pos-

itive estimates for each ability-gender group throughout the outcome distribution. By con-

trast, the full model results in negative or insignificant estimates. We find that the full model’s
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results are consistent with our non-parametric bounds (Appendix Figure A4).

Figure 10: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade test scores: School VA
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Notes: The figure presents the school value-added estimates of the effect of elite-school enrollment on the
distribution of elite-school students’ 8th-grade standardized test scores. The figure presents school VA estimates
for the deciles of the outcome distribution. The top (bottom) panels focus on mathematics (reading). The left
(right) panels focus on students whose 6th-grade test score is above (below) the median. The dashed lines refer
to the estimates of the simple school VA model (6th-grade standardized test score, cohort fixed effects) and the
solid lines refer to the full school VA model (6th-grade standardized test score, cohort fixed effects, 5th-grade
GPA, number of books at home, parental education, disadvantaged status, county of the school, type of the
settlement where the school is located). The shaded are represents the 95% confidence intervals around the
school VA estimates. The confidence intervals are based on 1,000 bootstrap draws. Sample: 8th-grade sample,
N = 126,196.

Figure 11 presents the school VA estimates for elite-school students’ 10th-grade standard-

ized test scores. We find that elite-school enrollment has a positive effect on elite-school

students’ 10th-grade test scores for both ability groups. The full model suggests that elite-

school enrollment increases the probability of having a mathematics test score above the

median by 10 percentage points for low-ability female students, and 12.5 percentage points

for low-ability male students. For high-ability students, we find that the effect on the proba-

bility of having a mathematics test score above the 9th decile is 7 percentage points for girls,

and 8 percentage points for boys. The relative effect elite-school enrollment on the mathe-
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matics test score is heterogeneous for high-ability students. We find that the relative effect for

high-ability female students is higher than those of high-ability male students. By contrast,

the relative effects do not differ between low-ability female and male students. We also find

that the relative effect is higher at the top of the outcome distribution (Appendix Table B7).

Figure 11: The effect of enrollment in an elite school on the distribution of elite-school
students’ 10th-grade test scores: School VA
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Notes: The figure presents the school value-added estimates of the effect of elite-school enrollment on the dis-
tribution of elite-school students’ 10th-grade standardized test scores. The figure presents school VA estimates
for the deciles of the outcome distribution. The top (bottom) panels focus on mathematics (reading). The left
(right) panels focus on students whose 6th-grade test score is below (above) the median. The dashed lines refer
to the estimates of the simple school VA model (6th-grade standardized test score, cohort fixed effects) and the
solid lines refer to the full school VA model (6th-grade standardized test score, cohort fixed effects, 5th-grade
GPA, number of books at home, parental education, disadvantaged status, county of the school, type of the
settlement where the school is located). The shaded are represents the 95% confidence intervals around the
school VA estimates. The confidence intervals are based on 1,000 bootstrap draws. Sample: 10th-grade sample,
N = 71,962.
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6 Conclusions

We have studied the effect on enrollment in an elite school on elite-school students’ short- and

medium-run academic achievement. Motivated by the fact that local effects identified at the

margin of admission may not generalize to the average elite-school student, the causal effect

of interest has been the average treatment effect on the treated. To identify the causal effects

of interest, we have used non-parametric bounds and school value-added models. To further

understand the heterogeneous effects of elite schools, we have conducted our analysis by

gender-ability groups, and we have studied the effects throughout the outcome distribution.

Our main finding is that enrollment in an elite school has a negative effect on female

and low-ability students’ mathematics test scores on the short run. By contrast, our non-

parametric bounds strategy does not allow us to exclude small, positive effects for high-

ability male students. We argue that the short-run negative effects are not the consequence

of grading policies (e.g., grading on a curve, ceiling effects), but they reflect real effects in

skill formation. As non-parametric bounds are uninformative about the sign of the medium-

run effects, we have used school value-added models to test whether the negative short-run

effects persist. These school value-added estimates suggest that elite-school enrollment has

a positive effect on academic achievement for each gender-ability group on the medium run.

The most salient difference between an average elite-school student and a student on the

margin of admission is her (baseline) academic ability. Therefore, our analysis has focused

on effect heterogeneity along the ability distribution. Splitting the sample by baseline ability

suggests that high-ability students benefit more from elite-school enrollment. By studying the

effect of elite-school enrollment throughout the outcome distribution, our findings indicate

that the benefits of elite schools are concentrated at the top of the test score distribution.

Our study design does not allow us to identify the exact mechanisms driving our results.

Nonetheless, heterogeneity analysis along school characteristics enables us to exclude some

important mechanisms. First, the negative upper bounds on the short-run effects in compre-

hensive schools suggest that school switching does not explain the negative short-run effects

of elite schools. Second, the positive upper bounds on medium-run outcomes are not solely

driven by less selective schools in the counterfactual.

We have focused on how elite-school enrollment affect academic achievement. However,
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parents may also value schools along other dimensions, such as non-cognitive skills, field

of study, college enrollment, or labor market outcomes (see, e.g., Beuermann and Jackson,

Forthcoming; Beuermann et al., 2018).17 We view the understanding of how elite schools

affect these outcomes as fruitful directions for future research.

17The strong positive association between Hungarian students’ standardized test scores and their labor market
outcomes (such as employment and wages) suggests that the medium-run benefits in academic achievement
may turn into long-run gains in the labor market (Hermann et al., 2019).
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A Additional Tables

Section A.1 presents additional summary statistics on the variables we use in our school

value-added models. Section A.2 presents validity checks for the 10th-grade sample. Sec-

tion A.3 presents additional results and compares the non-parametric bounds to the school

value-added estimates.

A.1 Data
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Table A1: Additional summary statistics

8th-grade sample 10th-grade sample

Elite-school
students

Non-elite-school
students Total

Elite-school
students

Non-elite-school
students Total

(1) (2) (3) (4) (5) (6)

A. Pre-treatment student characteristics
Primary education (father) 0.02 0.06 0.05 0.01 0.05 0.04

(0.12) (0.23) (0.22) (0.11) (0.21) (0.20)
Secondary education (father) 0.48 0.69 0.67 0.48 0.69 0.66

(0.50) (0.46) (0.47) (0.50) (0.46) (0.47)
Tertiary education (father) 0.50 0.25 0.28 0.51 0.26 0.29

(0.50) (0.43) (0.45) (0.50) (0.44) (0.46)
Primary education (mother) 0.02 0.07 0.06 0.02 0.06 0.05

(0.12) (0.25) (0.23) (0.13) (0.23) (0.22)
Secondary education (mother) 0.40 0.62 0.59 0.39 0.61 0.58

(0.49) (0.49) (0.49) (0.49) (0.49) (0.49)
Tertiary education (mother) 0.58 0.32 0.35 0.59 0.34 0.37

(0.49) (0.47) (0.48) (0.49) (0.47) (0.48)
Disadvantaged 0.00 0.03 0.03 0.00 0.01 0.01

(0.07) (0.17) (0.16) (0.06) (0.12) (0.12)

B. School location
Capital or county capital 0.59 0.41 0.44 0.59 0.64 0.63

(0.49) (0.49) (0.50) (0.49) (0.48) (0.48)
Town 0.41 0.40 0.40 0.41 0.36 0.36

(0.49) (0.49) (0.49) (0.49) (0.48) (0.48)
Village 0.00 0.19 0.16 0.00 0.00 0.00

(0.00) (0.39) (0.37) (0.00) (0.07) (0.06)

Number of students 16,702 109,494 126,196 8,850 63,112 71,962

Notes: The table presents the means and standard deviations of student characteristics for each sample. Columns (1) and (4)
focus on students who did not enroll in an elite school, columns (2) and (5) focus on students who enrolled in an elite school,
and columns (3) and (6) focus on the entire sample.
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A.2 Validity check

Figure A1: Validity check: Elite-school enrollment and student characteristics – 10th-grade
sample

Low ability High ability

F
em

ale

M
ath

M
ale

M
ath

F
em

ale

R
eading

M
ale

R
eading

4.0 4.5 5.0 4.0 4.5 5.0

Max 150

Bw 150−600

More than 600

Max 150

Bw 150−600

More than 600

Max 150

Bw 150−600

More than 600

Max 150

Bw 150−600

More than 600

5th−grade GPA

B
oo

ks
 a

t h
om

e

Treated share >=0.1 <0.1 <0.05 <0.01

Notes: The figure presents the share of students who enrolled in an elite school by student characteristics. Each
cell shows the share of elite-school students for a combination of 5th-grade GPA and the number of books at
home. In the top panels (bottom) high-ability/low-ability is defined as having 6th-grade mathematics (reading)
test score above/below the median. Sample: 10th-grade sample, N = 71,962.
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Figure A2: Validity check: The p-values of the Kolgomorov-Smirnov test – 10th-grade
sample
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Notes: The figure displays the p-values of the one-sided Kolgomorov-Smirnov test. The Kolgomorov-Smirnov
test tests the equality of the distributions of elite-school and non-elite-school students’ 6th-grade standardized
test scores. Each cell shows the p-value for a combination of 5th-grade GPA and the number of books at home.
In the top panels (bottom) high-ability/low-ability is defined as having 6th-grade mathematics (reading) test
score above/below the median. Sample: 10th-grade sample, N = 71,962.
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A.3 Results

Figure A3: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade standardized test scores: Non-comprehensive schools

Low ability High ability

M
ath

R
eading

0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.5 0.6 0.7 0.8 0.9

−0.05

0.00

0.05

0.10

0.15

0.00

0.05

0.10

P(score ≥ di)

E
ffe

ct
 o

f e
lit

e 
sc

ho
ol

s

Female Male raw difference upper bound

Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 8th-grade standardized test scores (solid lines). The dashed line denotes the raw differ-
ence between the outcomes of elite-school and non-elite-school students. We report the estimates separately by
gender and low- and high-ability students. Low- and high-ability students are defined by whether the students’
6th-grade standardized test score is below or above the median. The shaded area represents the area between
the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals are based
on 1,000 bootstrap draws. Sample: 8th-grade sample – non-comprehensive schools, N = 124,189.
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Figure A4: The effect of elite-school enrollment on the distribution of elite-school students’
8th-grade standardized test scores: Bounds and school VA
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Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 8th-grade standardized test scores (solid lines) along with the school value-added esti-
mates of full model (dashed lines). The figure presents the estimates for the deciles of the outcome distribution.
We report the estimates separately by gender and ability. Low- and high-ability students are defined by whether
the students’ 6th-grade standardized test score is below or above the median. The shaded area represents the
95% confidence intervals (for the bound estimate, only the upper confidence bound is plotted) based on 1,000
bootstrap draws. Sample: 8th-grade sample, N = 126,196.
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Figure A5: The effect of elite-school enrollment on the distribution of elite-school students’
10th-grade standardized test scores: Bounds and school VA
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Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribution
of elite-school students’ 10th-grade standardized test scores (solid lines) along with the school value-added esti-
mates of full model (dashed lines). The figure presents the estimates for the deciles of the outcome distribution.
We report the estimates separately by gender and ability. Low- and high-ability students are defined by whether
the students’ 6th-grade standardized test score is below or above the median. The shaded area represents the
95% confidence intervals (for the bound estimate, only the upper confidence bound is plotted) based on 1,000
bootstrap draws. Sample: 10th-grade sample, N = 71,962.
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B The relative effects of elite-school enrollment

This Appendix presents non-parametric bounds on the relative ATET, i.e., the relative effect of

enrollment in an elite school for elite-school students. We define the relative ATET as follows:

Relative ATET =
P [Y(1) > γ|D = 1]
P [Y(0) > γ|D = 1]

− 1 =
τ(γ)

P [Y(1) > γ|D = 1]− τ(γ)
, ∀γ.

In this Appendix, we present the relative ATET estimates for each figure presented in the

main text.

Figure B1: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 8th-grade mathematics grade
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Notes: The figure presents our upper-bound estimates of the relative effect of elite-school enrollment on the
distribution of elite-school students’ 8th-grade mathematics grade (solid lines). The dashed line denotes the
raw difference between the outcomes of elite-school and non-elite-school students. We report the estimates
separately by gender and low- and high-ability students. Low- and high-ability students are defined by whether
the students’ 6th-grade mathematics test score is below or above the median. Students’ 6th-grade mathematics
grade is measured on the scale of 1–5. The shaded area represents the area between the upper confidence band
(95%) and the upper bound estimate itself. The 95% confidence intervals are based on 1,000 bootstrap draws.
Sample: 8th-grade sample, N = 126,196.
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Figure B2: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 8th-grade standardized test scores
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Notes: The figure presents our upper-bound estimates of the relative effect of elite-school enrollment on the
distribution of elite-school students’ 8th-grade mathematics grades (solid lines). The dashed line denotes the
raw difference between the outcomes of elite-school and non-elite-school students. We report the estimates
separately by gender and low- and high-ability students. Low- and high-ability students are defined by whether
the students’ 6th-grade standardized test score is below or above the median. The shaded area represents the
area between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence
intervals are based on 1,000 bootstrap draws. Sample: 8th-grade sample, N = 126,196.
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Figure B3: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 8th-grade standardized test scores: Comprehensive schools
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Notes: The figure presents our upper-bound estimates of the relative effect of elite-school enrollment on the
distribution of elite-school students’ 8th-grade mathematics grades (solid lines). The dashed line denotes the
raw difference between the outcomes of elite-school and non-elite-school students. We report the estimates sep-
arately by gender and low- and high-ability students. Low- and high-ability students are defined by whether the
students’ 6th-grade standardized test score is below or above the median. The shaded area represents the area
between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence intervals
are based on 1,000 bootstrap draws. Sample: 8th-grade sample – comprehensive schools, N = 111,501.
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Figure B4: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 10th-grade standardized test scores
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Notes: The figure presents our upper-bound estimates of the relative effect of elite-school enrollment on the
distribution of elite-school students’ 10th-grade standardized test scores (solid lines). The dashed line denotes
the raw difference between the outcomes of elite-school and non-elite-school students. We report the estimates
separately by gender and low- and high-ability students. Low- and high-ability students are defined by whether
the students’ 6th-grade standardized test score is below or above the median. The shaded area represents the
area between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence
intervals are based on 1,000 bootstrap draws. Sample: 10th-grade sample, N = 71,962.

44



Figure B5: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 10th-grade standardized test scores: Elite secondary grammar schools

Low ability High ability

M
ath

R
eading

0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.5 0.6 0.7 0.8 0.9

0

20

40

0

10

20

30

P(score ≥ di)

R
el

at
iv

e 
ef

fe
ct

 o
f e

lit
e 

sc
ho

ol
s 

(%
)

Female Male raw difference upper bound

Notes: The figure presents our upper-bound estimates of the effect of elite-school enrollment on the distribu-
tion of elite-school students’ 10th-grade standardized test scores (solid lines). The dashed line denotes the raw
difference between the outcomes of elite-school and non-elite-school students. We report the estimates sep-
arately by gender and low- and high-ability students. Low- and high-ability students are defined by whether
the students’ 6th-grade standardized test score is below or above the median. The shaded area represents the
area between the upper confidence band (95%) and the upper bound estimate itself. The 95% confidence in-
tervals are based on 1,000 bootstrap draws. Sample: 10th-grade sample – elite secondary grammar schools,
N = 21,384.
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Figure B6: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 8th-grade standardized test scores: School VA
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Notes: The figure presents the school value-added estimates of the relative effect of elite-school enrollment
on the distribution of elite-school students’ 8th-grade standardized test scores. The figure presents school VA
estimates for the deciles of the outcome distribution. The top (bottom) panels focus on mathematics (reading).
The left (right) panels focus on students whose 6th-grade test score is above (below) the median. The dashed
lines refer to the estimates of the simple school VA model (6th-grade standardized test score, cohort fixed effects)
and the solid lines refer to the full school VA model (6th-grade standardized test score, cohort fixed effects, 5th-
grade GPA, number of books at home, parental education, disadvantaged status, county of the school, type of
the settlement where the school is located). The shaded are represents the 95% confidence intervals around the
school VA estimates. The confidence intervals are based on 1,000 bootstrap draws. Sample: 8th-grade sample,
N = 126,196.
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Figure B7: The relative effect of elite-school enrollment on the distribution of elite-school
students’ 10th-grade standardized test scores: School VA
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Notes: The figure presents the school value-added estimates of the relative effect of elite-school enrollment
on the distribution of elite-school students’ 8th-grade standardized test scores. The figure presents school VA
estimates for the deciles of the outcome distribution. The top (bottom) panels focus on mathematics (reading).
The left (right) panels focus on students whose 6th-grade test score is above (below) the median. The dashed
lines refer to the estimates of the simple school VA model (6th-grade standardized test score, cohort fixed effects)
and the solid lines refer to the full school VA model (6th-grade standardized test score, cohort fixed effects, 5th-
grade GPA, number of books at home, parental education, disadvantaged status, county of the school, type of
the settlement where the school is located). The shaded are represents the 95% confidence intervals around the
school VA estimates. The confidence intervals are based on 1,000 bootstrap draws. Sample: 10th-grade sample,
N = 71,962.
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C Data (for online publication)

This Appendix describes our data. We begin, in Section C.1, by describing our sample restric-

tions. In Section ??, we explain how we construct our variables.

C.1 Sample restrictions

Table C1 presents the evolution of the sample size as a result of our sample restrictions.

Table C1: Evolution of the sample size

2010 2011 2012 2013 2014 Total

A. 8th-grade sample
raw 104,266 96,843 92,966 89,913 87,542 471,530
w/o missing test score 96,212 89,005 85,245 81,919 80,065 432,446
w/o missing variables 76,875 70,777 68,278 66,636 65,651 348,217
w/o missing after imputation 91,372 84,562 81,441 75,971 74,637 407,983
w/o missing history 62,637 57,651 56,943 53,660 53,703 284,594
final sample 27,328 25,550 25,326 24,275 23,717 126,196

B. 10th-grade sample
raw 102,037 95,649 90,188 287,874
w/o missing test score 90,315 83,554 78,727 252,596
w/o missing variables 72,697 68,041 64,963 205,701
w/o missing after imputation 84,911 78,561 74,433 237,905
w/o missing history 54,062 48,945 47,365 150,372
final sample 25,371 23,519 23,072 71,962

Notes: The first row shows the number of students in our raw data, the National Assessment of
Basic Competencies (NABC), in each of the relevant years and grades. We document how much
of them we lose due to missing test scores and missing background variables. We win back a part
of this loss by imputing background variables (see Appendix C.3 for more detail), resulting in a
sample of more than 80% of the whole cohorts. Unfortunately, we can only link 60-70% of these
students to their 6th-grade results. Restricting the sample to those for whom elite school seems to
be a relevant option (having good grades and being in a school in 6th grade from which at least
one student goes into an elite school in our sample period) further decreases the size: we end
up with about 25% of the cohorts. Our samples are highly selective, but that makes them more
relevant for our question.
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C.2 Variable description

This Appendix describes the construction of variables in Tables 2 and A1.

• Number of books at home is categorical variable with three values: max. 150 books,

between 150 and 600 books, and more than 600 books;

• Mother’s education is a categorical variable with three values: primary, secondary, and

tertiary education;

• Father’s education is a categorical variable with three values: primary, secondary, and

tertiary education;

• Disadvantaged status is a binary variable, which takes a value of one when a student

has a disadvantaged status (i.e., comes from a low-income family);

• The type of the settlement where the school is located is a categorical variable with

four values: village, town, county capital, capital;

• County of the school is a categorical variable with 20 values;

C.3 Imputation

Student’s characteristics (number of books at home, mother’s education, father’s education,

disadvantaged status) are gained from an extensive background survey that complements

the NABC and which the students fill out together with their parents on a voluntary basis

(the average completing rate is around 75 percent, see Table C1). As these characteristics

should be mainly constant over time, we could exploit the longitudinal aspect of our data

to fill out missing values in one year from the corresponding questionnaire of another year.

The imputation is done by following a before-after approach: in the 8th-grade sample, we

first look for a value in the 6th-grade questionnaire, or if that is still missing, we rely on the

10th-grade questionnaire; in the 10th-grade sample, we impute from grade 8, or if that is

still missing, we go on to grade 6.
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