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Abstract

It is well understood that bandit algorithms that collect data adaptively - balancing
between exploration and exploitation - can achieve higher average outcomes than the
"experiment first, exploit later" approach of the traditional treatment choice literature.
However, there has been much less work on how data arising from such algorithms
can be used to estimate treatment effects. This paper contributes to this growing lit-
erature in three ways. First, a systematic simulation exercise characterizes the behav-
ior of the standard average treatment effect estimator on adaptively collected data:
I show that treatment effect estimation suffers from amplification bias and illustrate
that this bias increases in noise and adaptivity. I also show that the traditional cor-
rection method of inverse propensity score weighting (IPW) can even exacerbate this
bias. Second, I suggest an easy-to-implement bias correction method: limiting the
adaptivity of the data collection by requiring sampling from all arms results in an
unbiased IPW estimate. Lastly, I demonstrate a trade-off between two natural goals:
maximizing expected welfare and having a good estimate of the treatment effect. I
show that my correction method extends the set of choices regarding this trade-off,
yielding higher expected welfare while allowing for an unbiased and relatively pre-
cise estimate.
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1 Introduction

We are often interested in whether an innovative treatment should be introduced and
applied for individuals arriving in succession. Suppose an online shop wants to change
its pricing scheme. They can experiment with a new scheme introducing it to part of their
daily visitors, with the ultimate goal of applying the better scheme as soon as possible
to maximize their profit. Once they change to the new scheme, they also want to know
how much value they can hope from it for their next year’s budget, i.e. they also want to
measure the treatment effect.

This problem is ubiquitous today. Innovation is crucial to survival. We want to apply
the procedure that yields the best expected outcome according to our current knowledge
(status quo) but we also want to experiment with new ideas that might yield even higher
outcome (exploitation versus exploration, earning versus learning). We are also interested
in learning what to expect from introducing an innovation.

The standard procedure in economics to decide on the introduction of a new pricing
scheme is to first learn its effect, and then to introduce it if the effect is positive. The
traditional treatment choice literature (e.g. Manski 2004, Dehejia 2005, Hirano and Porter
2009, Kitagawa and Tetenov 2018, Athey and Wager 2019) assumes that an experimental
sample with randomized assignment exists and derives the welfare-maximizing policy
rule given the information that can be learnt on the previously collected data. The wel-
fare of the experimental subjects is disregarded. However, in practice, exploration and
exploitation do not naturally separate. The decision-maker always decides (sometimes
unconsciously) whether it is worth experimenting or simply applying the best practice.

Multi-armed bandit algorithms (for comprehensive reviews see, e.g. Lattimore and
Szepesvári 2019, Slivkins 2019) seek to optimize the exploration-exploitation trade-off
suggesting heuristic rules that "learn and earn" in parallel. Instead of aiming for a one-
off decision, they involve a sequence of decisions where each decision balances between
experimenting and exploiting. As such, it is suitable for situations where the feedback is
quick (as in our pricing scheme example). The goal is to maximize the expected welfare
during the whole process, including the experimentation phase. Bandit algorithms con-
tinuously balance between choosing the treatment arm with the highest expected payoff
(exploitation) and choosing treatment arms that are not yet known well (exploration) –
the result of each decision contributes to later decisions. There is a quickly evolving liter-
ature (in the field of computer science) that investigates different algorithms in different
setups and prove their optimality by various criteria. As algorithms aim to find the arm
with the highest expected reward (or finding the better pricing scheme), measuring the
exact effect of the various arms relative to a baseline is not part of the problem considered.
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My paper is at the intersection of the traditional treatment choice literature of economet-
rics and the growing literature on multi-armed bandits of machine learning. I consider
situations similar to the online shop example above, where the decision-maker assigns
individuals to different treatments with two goals in mind: (1) maximizing profit (or wel-
fare) and (2) estimating the treatment effect. There are two treatments (status quo and
innovation, control and treatment) and individuals arriving in groups or batches should
be assigned to one of them. The individual-level treatment effect is fixed but its magni-
tude (relative to the variation in the potential outcomes) is ex ante unknown. The length of
the process (total number of arriving individuals, also called as "horizon") is finite but also
unknown. The size of the batches, ie. the frequency of allocation decisions is controlled
by the decision-maker.

I run Monte Carlo simulations to understand the welfare and estimation behavior of dif-
ferent strategies in this setup. I study a well-known multi-armed bandit heuristic, Thomp-
son sampling, suggested by Thompson (1933). I chose this method because it is one of the
most well-known algorithms, it is widely used in the industry (see e.g. Graepel et al. 2010,
Scott 2010) and it is a probabilistic rule that has some appealing features I am going to rely
on later. However, the focus is not on the specific heuristic, but on the basic features of
adaptively collected data when used for statistical inference. All of my results should
extend to other popular heuristics that are deterministic, such as the Upper Confidence
Bound algorithm (see e.g. Lai and Robbins 1985).

What we know so far The welfare performance of bandit algorithms in a stochastic con-
text are measured by their expected reward (total welfare) relative to the reward gained
by the best possible assignment policy (which is usually infeasible). The difference be-
tween these two measures is the expected regret. Each bandit can be characterized by
their worst-case regret (within a given set of environments formed by the distribution
of rewards and the length of the horizon). The seminal paper of Lai and Robbins (1985)
derived an asymptotic lower bound on regret that any bandit algorithm should suffer.

Recent papers (Agrawal and Goyal 2012, 2013, Korda et al. 2013) prove that Thompson
sampling is asymptotically optimal in terms of regret in various settings. Perchet et al.
(2016) extends their result to batched bandits, where individuals arrive in groups (or
batches) instead of one-by-one. The traditional solution in econometrics to experiment
first and form an appropriate assignment rule later is welfare-suboptimal (see e.g. Latti-
more and Szepesvári 2019).

There are much less result that considers estimation after bandits. Nie et al. (2018) prove
in theory that the estimated means of the treatment arms suffer from negative bias. They
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suggest a complex modification of the data collection process that can eliminate the bias.

Villar et al. (2015) compare various bandit algorithms in terms of outcome and also es-
timation performance in a simulated clinical trial. They show biased treatment effect
estimations simulating many different multi-armed bandit algorithms.

My contribution To my knowledge, this is the first paper that considers welfare and es-
timation goals parallel and compares different strategies in the welfare-estimation space.
I have three main contributions to the literature:

First, I characterize the welfare and estimation behavior of Thompson sampling and the
traditional treatment effect estimator on adaptively collected data. I show that, generally,
smaller batch size (ie. deciding more often) increases the expected welfare. However, if
adaptivity is too quick adaptivity (the batch size is below a certain cutoff) the welfare cost
of higher volatility outweighs the gains from smaller opportunity cost. Quicker adap-
tivity also increases the negative bias in means (for which I provide an intuitive expla-
nation) that results in a larger amplification bias in the treatment effect estimate. These
results highlight an important trade-off: strategies that achieve high welfare (adaptive
algorithms) lead to highly biased treatment effect estimates - whereas running a random-
ized controlled trial on the whole sample (the gold standard for measuring the effect)
suffers from a huge opportunity cost (resulting from assigning too many individuals to
the inferior treatment).

Second, I prove that inverse propensity weighting (IPW) – traditionally used for bias cor-
rection – is equivalent to taking the simple averages of the batch averages (if the propen-
sity weights are estimated). I show that in this setup, IPW does not work – in fact, it can
even exacerbate the bias.

Finally, I suggest an easy-to-implement bias correction method: limiting the propensity
scores away from the extremes that practically moderates the adaptivity of the data col-
lection by requiring sampling from both arms in each batch. This assignment rule allows
for unbiased inverse-propensity-weighted treatment effect estimate, whereas it preserves
almost all of the welfare gain stemming from adaptivity. I show that limiting extends
the set of choices regarding the welfare-estimation trade-off relative to some established
strategies (such as the standard "explore first, exploit later" or explore-then-commit strat-
egy).

Related recent literature A recent paper of Hadad et al. (2019) deals with a similar prob-
lem: they suggest data-adaptive weighting schemes to correct the standard treatment ef-
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fect estimator on adaptively collected data, also ensuring asymptotic normality to make
statistical inference possible. They deal only with estimation, and do not consider welfare.

Dimakopoulou et al. (2018) look at so called contextual bandits that include observable
variables in the algorithms to capture heterogeneity in the treatment effect. They focus
on bias in treatment effect originating from imbalances in the observables. In contrast,
I focus on the general characteristics of the standard treatment effect estimator that are
apparent even if the effect itself is constant.

A new line of research focuses on optimal experimentation design where the goal is to
learn the treatment effect (see Kasy (2016) for one-off experiments, and Hahn et al. (2011)
for adaptive experiments). Another deals with adaptive treatment assignment where the
goal is to choose among a set of policies for large-scale implementation (Kasy and Saut-
mann 2019). The latter’s setup is especially close to mine but there is a major difference:
these works assume away the welfare of the experimental subjects and only focus on
learning. I consider both welfare and estimation under adaptive treatment assignment.

This paper The paper is structured as follows. Section 2 gives a formal setup for the
problem. Section 3 characterizes the basic welfare and estimation properties of the ban-
dit assignment rule using the standard treatment effect estimate and shows the welfare-
estimation trade-off. Section 4 discusses different methods for correcting the bias: inverse-
propensity weighting, first batch treatment effect and propensity score limiting. Section
5 demonstrates the results of the systematic Monte Carlo simulation which illustrate the
behavior of the previously discussed strategies in different scenarios. Section 6 assesses
the simulation results in a practically relevant setting using data from the well-known
National Job Training Partnership Act (JTPA) study. Section 7 concludes.

2 Setup

There is a set of n individuals indexed by i ∈ {1, ..., n} whose outcome Y is of interest.
There is a binary treatment Wi ∈ {0, 1}where Wi = 0 stands for the no-treatment case, i.e.
the status quo. {Yi(1), Yi(0)} are potential outcomes that would have been observed for
individual i with or without the treatment (potential outcomes might include the cost of
the corresponding treatment). The actual (observed) outcome is Yi = Yi(1)Wi +Yi(0)(1−
Wi). Let us denote the expected value of the potential outcomes by µw = E[Yi(w)], for w ∈
{0, 1}. The individual-level treatment effect is fixed, i.e. Yi(1) = Yi(0)+ τ for each i where
τ denotes the treatment effect. Therefore, the population is characterized by {Yi(0)}n

i=1.
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For simplicity, I assume Y(0) is Gaussian with known variance (I show in Section 5.3
that the Gaussian assumption is only technical, the main results stand for skewed and
fat-tailed distributions as well as long as they have finite means).

Individuals arrive randomly in equal-sized batches denoted by B and indexed by j ∈
{1, ..., m}. The batch size is under the control of the decision-maker1 and is denoted by nB

so mnB = n. Arrival is sequential and the outcome is observed right after the assignment.
The process can be described as follows:

1. A group of individuals i ∈ Bj arrive, and are assigned to either treatment or control.
2. Outcomes {Yi}i∈Bj are observed.
3. A next group of individuals i ∈ Bj+1 arrive and the first two steps are repeated.

Let us denote the observed history (assignments and outcomes) up until the kth batch by
H(k) = {Yi, Wi}i∈⋃k

j=1 Bj
. Therefore, the whole history of n individuals is H(m).

The decision-maker has two goals: she wants to maximize profit (or welfare) based on
outcomes, and she also wants to estimate the treatment effect τ with an unbiased, precise
estimator. She decides about two things in parallel:

1. assignment rule A function that maps the history to a probability that expresses the
share of the next batch assigned to the treatment: π

(
H(k)

)
= P (Wi = 1|i ∈ Bk+1) =

pk+1. The choice of assignment rule incorporates the choice of batch size as well:
nB = |Bk|.

2. estimation method A function that maps the whole history (observed data of the
population) to a number that expresses the treatment effect: τ̂

(
H(m)

)
.

I will call a combination of an assignment rule and an estimation method a strategy. The
decision-maker chooses a strategy to pursue both of her goals. Throughout this paper I
use two simple objective functions to measure these goals:

1. welfare goal max ∑n
i=1 Yi

2

1It is natural to assume that the decision-maker has some control over the batch size. Even if the arrival
of individuals is dictated by an external process, one can still increase the batch size by collapsing original
batches. How frequently the decision-maker decides about allocation is a decision itself.

2Assuming the outcome contains the cost of treatment, it is the profit of a firm. Assuming a utilitarian
social welfare function, it is the total welfare.
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2. estimation goal min E
[
(τ̂ − τ)2] subject to E[τ̂] = τ 3

To illustrate adaptive assignment rules that blend exploitation with exploration I use an
old heuristic, the Thompson Sampling (Thompson 1933). It suggests to assign each in-
dividual to treatment by the probability that corresponds to your actual beliefs that the
treatment outcome is the highest4. I implement this rule as follows (for a chosen batch
size):

Thompson Sampling (TS)

1. Split the first batch equally between treatment and control.

2. Form beliefs about the treatment and control means by deriving posterior dis-
tributions using normal density with calculated averages (recall the known-
variance assumption)a:

N
(

µ̂
(k)
1 ,

σ2

n(k)
1

)
for treatment, and N

(
µ̂
(k)
0 ,

σ2

n(k)
0

)
for control,

where
n(k)

1 = ∑i∈⋃k
j=1 Bj

Wi, n(k)
0 = ∑i∈⋃k

j=1 Bj
(1−Wi).

3. Calculate the probability that the treatment mean is higher than the control
mean (let us denote it with r(k)). Technically, this can be achieved by sampling
from the corresponding distributions.

4. Split the next batch according to this probability: pk+1 = r(k)

5. Repeat from step (2) until assigning the last batch.

aThis is equivalent to the posterior of mean of a normal variable with known variance using
non-informative Jeffreys prior

Intuitively, we will choose the treatment more likely (for a larger fraction of individuals
in the batch) if (1) we are uncertain about its expected outcome (exploration), or (2) we
are certain that its expected outcome is high (exploitation).

3Recall the bias-variance decomposition: E
[
(τ̂ − τ)2] = (E [τ̂]− τ)2 + E

[
τ̂2] − E2 [τ̂] where the last

two terms give the variance of the estimator. So minimizing the mean-squared error is just minimizing the
variance if the estimator is unbiased.

4For more detail, see Russo et al. (2017)
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3 Demonstration of welfare and estimation properties

3.1 Parametrization

I assume – without loss of generality – a positive average treatment effect with unit value
(τ = 1). The population consists of n = 10, 000 individuals, the potential outcomes are
Gaussian with σ = 10. The noise-to-signal ratio is high to make the treatment effect hard
to measure, and thus, the problem interesting. The potential outcomes are constructed
such that µ1 = 1 and µ0 = 0 within the population. The minimum batch size is 10
(where m = 1000), and I simulate the following choices for the decision-maker: nB ∈
{10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}. The maximum value corresponds to a
simple random split on the whole sample.

In this setup, the (infeasible) optimal treatment rule is to treat everyone (π = 1) that
would achieve a total welfare of 10, 000. Due to the fact that the treatment effect is nor-
malized and is fixed for everyone, the sum of outcomes equals to the sum of individuals
assigned to the treated, so both measures express the total welfare.

I run 20, 000 simulations for each assignment rule. The runs differ only in the sequence of
how the individuals arrive; they all use the same population of 10,000 with the average
of potential outcomes equaling to 0 and 1, respectively.

3.2 Welfare

One would expect that smaller batch size (more batches, quicker adaptivity) leads to
higher welfare, as it extends the possibilities of the policy maker. Also, as the first batch
is a simple random split, the maximum welfare an adaptive rule could achieve in the
best case is 10, 000− nb

2 . Smaller batch sizes give the chance of reacting more quickly to a
positive treatment effect, hence, suffering less opportunity cost.

However, the simulation results only partially justify this expectation. Figure 1 shows
the expected welfare by batch size: generally, smaller batch size leads to higher expected
welfare, but focusing on the small batch size region (left panel) reveals that being too
"quick" can also do harm; the optimum is around nB = 100. The reason for this is that
being more adaptive means deciding based on more volatile estimates that increases the
probability of adapting to the wrong pattern (in this case, "learning" a negative treatment

8



Figure 1: Expected welfare by batch size
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Notes: The figure shows the expected welfare by batch size using a logarithmic scale to focus on the in-
teresting region. The shaded area shows the 90% confidence interval, the dashed line depicts the median,
the point highlights the batch size with maximum expected welfare. Smaller batches (quicker adaptivity)
generally lead to higher welfare, but only until a certain point: really small batch size can harm. Num-
ber of simulations = 20,000.

effect)5. Under a certain threshold of batch size, the loss on volatility seems to outweigh
the gain on opportunity cost6.

Figure 2 illustrates this phenomenon by showing the probability of under-performing a
simple random split in terms of welfare at each point of the process, for different batch
sizes. At the beginning, quicker adaptivity allows for smaller opportunity cost as smaller
batch sizes mean that the algorithm can allocate less people to the inferior treatment (re-
call that the first batch size is a random split). However, quicker adaptivity also means
making decisions based on more volatile measures due to smaller sample sizes. These
decisions turn out more likely to be false, therefore, the probability of under-performing
remains relatively high at the later stages of the process. The welfare result of Figure 1
originates from these two contradicting processes.

5Figure A.20 in the Appendix shows the whole distribution of welfare for each batch size: the achieved
welfare (that is equivalent to the number of individuals assigned to the treatment) is much more volatile
for smaller batch sizes

6The behavior of the batch size parameter lets us raise an interesting analogy from the machine learning
literature: regularization (see e.g. Hastie et al. 2001) is a technique that discourages learning a too complex
or flexible model (e.g. by shrinking coefficients). Regularization leads to higher bias to gain on variance,
increasing predictive accuracy. In our case, larger batch size means more regularization: it constrains the
set of choices and loses on opportunity cost at the beginning, but wins on generalization in the longer term
– especially if the noise is high.
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Figure 2: Evolution of bandit algorithms
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Notes: Each point depicts the probability that the bandit algorithm under-performs a simple random split
after the first n arriving individuals (evaluated across the simulation runs). Quicker adaptivity results in
smaller opportunity cost at the beginning (left panel), but leads to higher probability of getting wrong at
later stages (right panel). Number of simulations = 20,000.

The fact that for this given setup a constrained algorithm works better than a less con-
strained one does not contradict to the literature. The Thompson Sampling algorithm is
a general solution, working well in different setups whose parameters (mainly τ and n)
are ex-ante unknown. As we are going to see later, avoiding too small batches helps only
if the noise is high, or equivalently, if the treatment effect is small.

3.3 Estimation

The standard method to estimate the treatment effect is to compare the observed averages
of the individuals in both groups:

τ̂0 =
∑n

i=1 YiWi

∑n
i=1 Wi

− ∑n
i=1 Yi(1−Wi)

∑n
i=1(1−Wi)

(1)

According to the theoretical results of Nie et al. (2018) the averages are negatively biased
estimator for the true expected values of the outcomes. Figure 3 characterizes the bias
for different choices of batch size. It confirms the negative bias result and shows two ad-
ditional interesting result: (1) quicker adaptivity leads to a more volatile estimate with
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larger bias and (2) the control mean contains a larger (negative) bias that is more volatile
than the treatment mean. The latter result follows from the fact that the treatment effect
is positive so we end up with much more treatment observations (recall that the expected
welfare equals to the number of individuals assigned to the treatment). As a result, the
treatment effect estimator suffers from amplification bias but because of partial compen-
sation, the bias in the s smaller than the bias in the control mean (Figure A.21 in Appendix
shows the distribution of τ0 for different batch sizes).

Figure 3: Bias in group mean estimates by batch size
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Notes: The figure shows the bias in the group mean estimates by batch size using a logarithmic scale to
focus on the interesting region. The shaded area shows the 90% confidence interval, the dashed line depicts
the median. Quicker adaptivity results in larger negative bias that is much more expressed for the control
group (as we end up with more treatment observations). Number of simulations = 20,000.

The negative bias in group means results from an asymmetry in sampling that is an in-
herent feature of the adaptive data collection. For the sake of an intuitive understanding
of this process, let us focus only on the control estimate where the bias is larger. As the
first batch is a simple random split, the first batch average is an unbiased estimate for
the control mean: E[µ̂

(1)
0 ] = µ0. However, the actual estimate contains some estimation

error: µ̂
(1)
0 = µ0 + ε

(1)
0 . If this error is negative – ε

(1)
0 < 0 – there will be a positive error

in the treatment effect estimate. As a result, the bandit’s belief will be distorted towards
the treatment being effective, so more individuals will be assigned to the treatment and
only a few to the control. Few new observations in the control group cannot compensate
for the original error in the control estimate. However, if the error in the first batch is
positive – ε

(1)
0 > 0 – the belief will be distorted towards the treatment being ineffective, so

more individuals will be assigned to control, and these new observations can outweigh
the original error in the control estimate.
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Figure 4 provides a visual illustration for this mechanism. If the first batch results in
a negative control estimate, this error is more likely to remain there also in the overall
estimate of the experiment, than in the case when the first batch results in a positive
control estimate.

Figure 4: Density of mean estimates, using the first batch versus the whole sample
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Notes: First batch mean estimate is evaluated on individuals arriving in the first batch (nB = 1000). Darker
regions mean higher density. The importance of the first batch estimate is clear, especially for the con-
trol outcome: an underestimated group mean from the first batch remains uncompensated in the overall
estimate. Number of simulations = 20,000.

Note that this asymmetry by the estimation error is not restricted to the first versus later
batches but is present throughout the whole process. It is only most visible after the first
batch as the first round of assignment does not depend on previous observations.

The asymmetry can be highlighted using a simple decomposition of τ̂0: the treatment
and control averages can be calculated as weighted averages of the batch group averages
where the weights are the shares of the given batch within the total size of the given group
(see Equation 2). The batch group estimates are unbiased as they arise from simple ran-
dom splits of batches (only the way how the split is done changes but it does not matter
regarding unbiasedness). The bias in the overall averages results only from compositional
effect: as a negative error in the estimate of a given batch leads to under-sampling in
the following batches, it means lower weights for these batches, thus, a relatively higher
weight to the given erroneous batch. In contrast, a positive error leads to over-sampling
in the following batches, which gives a relatively lower weight for the erroneous batch.
Also, over-sampling in the next batch quickly leads to the correction of the error, thus the
over-sampling itself remains only a temporary issue.
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τ̂0 =
m

∑
j=1

∑i∈Bj
YiWi

∑i∈Bj
Wi︸ ︷︷ ︸

batch treated
average

∑i∈Bj
Wi

∑n
i=1 Wi︸ ︷︷ ︸

share of batch
within all treated

−
m

∑
j=1

∑i∈Bj
Yi(1−Wi)

∑i∈Bj
(1−Wi)︸ ︷︷ ︸

batch control
average

∑i∈Bj
(1−Wi)

∑n
i=1(1−Wi)︸ ︷︷ ︸

share of batch
within all control

(2)

3.4 Welfare-Estimation Trade-off

My previous results suggest an interesting trade-off: quicker adaptivity generally results
in higher expected outcome (welfare goal) but leaves us with a more biased and more
volatile treatment effect estimate (estimation goal). Using the maximum batch size of
10, 000 is equivalent to running a randomized controlled trial (RCT) on the whole sample:
being the gold standard for measuring an effect it results in a reasonable estimate, but
also a much lower expected welfare.

To compare the performance of different strategies in this space I plot the expected wel-
fare (x axis) against the mean squared error of the estimator (reversed y axis), the two ob-
jective functions of the decision-maker (see Figure 5). To highlight the decision-maker’s
constraint of unbiasedness, biased estimates are shown with hollow circles whose trans-
parency is proportional to the size of bias. The best strategy would be a strong point at the
top right corner: with a total welfare of 10, 000 and an unbiased treatment effect estimate
with zero MSE. Obviously, such a strategy does not exist.

Each strategy on the figure combines the adaptive allocation rule with τ̂0, the only dif-
ference is the choice of nB. A decision-maker who only cares about the estimation goal
would choose the top left point of full RCT. Moving towards more adaptive rules brings
significant welfare gains for a slow increase in the variance of the estimator. However,
the bias needs to be corrected.
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Figure 5: Performance of the bandit assignment rule in the welfare-estimation space
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Notes: Each dot shows the achieved welfare and the mean squared error of the standard treatment effect
estimator of the bandit assignment rule with a given batch size. Smaller batch size (quicker adaptivity)
leads to higher welfare but also larger bias and larger MSE. Number of simulations = 20,000.

4 Bias correction

4.1 Inverse Propensity Weighting (IPW)

A standard technique to correct bias in the treatment effect estimator is inverse propen-
sity weighting (also mentioned by Nie et al. 2018, Dimakopoulou et al. 2018). I prove in
Equation 3 that using IPW with estimated7 propensity score (the actual share of a batch
assigned to the treatment) is equivalent to using simple average of the batch averages
(without weighting as in τ̂0). Following from the fact that each group average is an un-
biased estimate for the corresponding group mean, this method takes the averages of
multiple unbiased estimates and thus gets rid of the compositional effect and takes the
averages of multiple unbiased estimates. As individuals arrive in batches, individual
propensity scores depend only on the individual’s batch: pi = P(Wi = 1) = pj for
i ∈ Bj.

7Other works, such as Hadad et al. (2019), use true propensity scores instead. This requires that one
stores the allocation probabilities as well. For me, {Yi, Wi} suffice.
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τ̂IPW =
1
n

(
n

∑
i=1

YiWi

pi
−

n

∑
i=1

Yi (1−Wi)

1− pi

)

=
1
n

m

∑
j=1

∑
i∈Bj

YiWi

pj
− ∑

i∈Bj

Yi (1−Wi)

1− pj


=

1
n

m

∑
j=1

∑
i∈Bj

YiWinB

∑i∈Bj
Wi
− ∑

i∈Bj

Yi (1−Wi) nB

∑i∈Bj
(1−Wi)


=

1
m

m

∑
j=1

∑i∈Bj
YiWi

∑i∈Bj
Wi︸ ︷︷ ︸

batch treated
average

− 1
m

m

∑
j=1

∑i∈Bj
Yi(1−Wi)

∑i∈Bj
(1−Wi)︸ ︷︷ ︸

batch control
average

(3)

However, IPW does not seem to be effective: instead of eliminating the bias, it can even
exacerbate the problem (Figure A.22 in Appendix shows the distributions of τ̂IPW for
different batch sizes). The volatility of the estimator is also much higher.

The reason for this lies again in the asymmetry of sampling. Taking the average of aver-
ages as explained above should work but only if there are averages available to average
on. However, in some cases the bandit might assign everyone to the treatment leaving no
control assignees to use for calculating the control batch average. These cases are exactly
the ones where the treatment effect is estimated with the highest positive error (hence the
extreme assignment share of the treated). I illustrate this process for nB = 1000. Table 1
summarizes the expected value of the estimator by how many batches contained any con-
trol assignee: the more batch is without controls (everyone is assigned to the treatment)
the more over-estimated is the effect. As the natural consequence of this selection, runs
with controls in every batch (the majority) result in an under-estimated treatment effect.

Table 1: Comparison of τ̂IPW by number of batches with control assignment

# of batches
with controls 1 2 3 4 5 6 7 8 9 10

E[τ̂IPW ] 1.99 1.85 1.76 1.79 1.71 1.46 1.64 1.32 1.22 0.80
Probability 2.0% 3.2% 3.5% 3.5% 3.8% 4.4% 5.2% 6.8% 11.4% 56.3%

Notes: Selection bias: Runs with controls in every batch (nB = 1000) underestimate the treat-
ment effect while runs with batches without controls overestimate the treatment effect, using
the average of averages (τ̂IPW) for estimator. Number of simulations = 20,000.

Figure 6 provides a visual illustration for this phenomenon on the control group. The
left panel shows that each batch average in itself is an unbiased estimate for the corre-
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sponding control mean. As we tend to sample less and less control in later batches, the
estimate is more and more volatile. The right panel shows how the average of averages
evolve through batches. If the average of averages after a given batch is small, we tend
to sample either less control in the following batch so we update the average with a more
volatile average, or no control at all so we do not update the average. This process results
in the negatively biased, negatively skewed distribution plotted with the darkest color in
the chart.

Figure 6: Batch average for the control mean across batches (nB = 1000)
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Notes: Each batch in itself is unbiased. Average of batch averages is getting biased due to selection. Num-
ber of simulations = 20,000.

4.2 Using the first batch only

One can overcome the problem with inverse propensity weighting by using only the data
collected in the first batch. I call this as First Batch Estimator (τ̂FB):

τ̂FB =
∑i∈B1

YiWi

∑i∈B1
Wi
− ∑i∈B1

Yi(1−Wi)

∑i∈B1
(1−Wi)

(4)

This estimator is unbiased, so the strategy of Thompson sampling assignment rule com-
bined with the first batch estimation method (TS-FB) works. However, it loses on effi-
ciency as it drops a large fraction of observations, especially for small batch sizes (Figure
A.23 in Appendix shows the distributions of τ̂FB for different batch sizes).
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To better understand the efficiency cost relative to the welfare gain of this strategy, I visu-
alize its performance on the welfare-estimation plot (Figure 7). As a benchmark, I add the
traditional strategy in economics where the assignment rule is not adaptive: first, concen-
trate on the estimation goal and run an RCT on an experimental sample, and then, focus
on the outcome and form a deterministic rule based on the result that can be applied from
then on (subject of the classic treatment choice literature). This process can be translated
to my case as the rule of Explore-then-commit (ETC):

Explore-then-commit (ETC)

1. Split the first batch equally between treatment and controla .

2. Estimate the average treatment effect by comparing the treatment and control
averages calculated on the collected datab:

τ̂(1) = µ̂
(1)
1 − µ̂

(1)
0 =

∑i∈B1
YiWi

∑i∈B1
Wi
− ∑i∈B1

Yi(1−Wi)

∑i∈B1
(1−Wi)

3. Apply the assignment with the higher mean to everyone onwards:

pk = arg max
w

{
µ̂
(1)
w

}
for k ≥ 2

aTypically, the size of the batch is calculated by assuming a minimum size for the treatment effect
and deriving a required sample size that yields enough power given a predetermined false positive
rate (or significance level).

bComparing the averages corresponds to the Conditional Empirical Success Rule of Manski
(2004).

Adaptive data collection using τ̂FB clearly dominates the Explore-then-Commit (ETC)
strategy (using τ̂0) for decision-makers valuing welfare more, but it loses when MSE is
more important. The closest choices to the optimal top right point are nB ∈ {1000, 2000}
for both strategies.

4.3 Limiting the propensity scores

With a slight modification of the assignment rule the efficiency problem of the TS-IPW
strategy can be improved (while preserving the bias-corrected estimate). As I showed
in section 4.1, the reason why τIPW is biased after adaptive data collection is that the
algorithm does not assign to both groups in each batch, and this unanimous assignment
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Figure 7: Performance of different strategies in the welfare-estimation space
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Notes: Each dot shows the achieved welfare and the mean squared error of the corresponding treatment
effect estimator for a given strategy with a given batch size. Generally, quicker adaptivity leads to higher
welfare but also larger MSE. ETC with moderate batch size works well, but smaller batch size harms not
only MSE but also welfare. TS-FB approximates the standard TS strategy with higher MSE but ensuring an
unbiased estimate. Number of simulations = 20,000.

asymmetrically depends on previous observations. A simple solution for this issue is to
ensure that people are assigned to both groups in each batch, that is to limit the (realized)
propensity score away from the extremes of zero and one. Although this method needs
the modification of the data collection process, in the digital world this is typically not
very costly. Also, this solution is easy-to-implement.
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Limited Thompson Sampling (LTS)

The difference to the native Thompson Sampling is highlighted in bold.

1. Split the first batch equally between treatment and control.

2. Form beliefs about the treatment and control means by deriving posterior dis-
tributions using normal density with calculated averages (assuming that stan-
dard deviation is known).

3. Assign individuals to the treatment in the next batch by the probability that
the treatment mean is higher than the control mean. If this probability is too
extreme, use a limited probability instead. Denoting the amount of limi-
tation by L, and the probability after the kth batch by p(k), the assigning
probability is p̃(k) = max

(
min

(
p(k), 1− L

)
, L
)

.

4. Repeat from step (2) until assigning the last batch.

The smallest possible limitation (e.g. 1% for the batch size of 100) would yield an unbiased
τ̂IPW estimate. The amount of limitation incorporates the welfare-estimation trade-off.
Limiting to higher extent requires higher opportunity cost, but also allows for more robust
estimates. It forms a smooth transition between two endpoints: the unlimited bandit (0%
limit, previously used in TS and TS-FB strategies) and a random split of the full sample
(50% limit, ETC with nB = 10000, full RCT).

Figure 8 shows the effect of limitation on welfare and estimation goals simulating 8 dif-
ferent limit levels8. As expected, higher limit means lower welfare and more precise τ̂IPW

estimate9.

The loss in welfare and the gain in precision is disproportionate: while the loss is linear
in the amount of limitation, the gain is not: using a 1% limit, MSE drops dramatically for
each batch size (by as much as 80% for nB = 2000 - see right panel) while it costs no more
than 1% of welfare (left panel).

It is interesting to note that limitation affects differently the different batch sizes. Small
and large batch sizes induce lower cost than the middle range for a given limit. This is the
result of two factors: First, limitation acts as a regularization tool, similarly to what we
have seen with larger batch sizes. Limitation decreases the probability of over-fitting, and

80%, 0.5%, 1%, 2%, 5%, 10%, 15% and 20%.
9Limitation also decreases the bias of the τ̂0, but due to the inherent weighting in Equation 2, some bias

remains until the limit reaches the level of the simple random split.

19



Figure 8: Welfare and estimation performance of the LTS-IPW strategy
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Notes: The left panel shows the relative welfare achieved by the limited bandit rule compared to the un-
limited one for various limit choices, by batch size. The right panel compares the MSE of the inverse-
propensity-weighted estimators on the resulting data. Higher limits incur higher welfare cost but bring
more precision. The loss and gain by the amount of limit are disproportionate. Number of simula-
tions = 20,000.

can thus improve welfare for some runs. Second, limitation obviously does not affect the
simple random split of the first batch. For larger batch sizes, the share of the first batch is
higher, thus, the limitation cost is relatively lower.

On the other hand, the improvement on the estimation precision is about stable by batch
size. This result follows from the fact that limitation is defined as share of the batch, so it
means closely the same for each batch size. Higher limitation - in line with approaching
the simple random split strategy - also improves the skewness of the estimator and the
variance of the reached welfare.

As the estimation improvement does not depend on the batch size, strategies with quicker
adaptivity should fare better in the welfare-estimation space. The left panel of Figure 9
shows the performance of LTS-IPW with different limits. Lower limitation can achieve
higher welfare with an appropriate batch size, but only for a growing cost on MSE. The
lines are close to horizontal, showing that smaller batch sizes can achieve higher expected
welfare for practically no estimation cost. Different points of this chart depict different
parametrizations (nB, L) of LTS-IPW strategy; some of them dominate each other (e.g.
large batch sizes with low limitation are clearly worse than smaller batch sizes with higher
limitation). Connecting the best parametrizations give us the Performance Frontier of
this strategy in the welfare-estimation space. Any of these point could be achieved by
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choosing an appropriate batch size (nB) and amount of limitation (L) - not necessarily
simulated in this exercise.

Figure 9: Performance of different strategies in the welfare-estimation space
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Notes: The right panel shows the achieved welfare and the MSE of the inverse-propensity-weighted estima-
tor of the limited bandit rule, by various limits and batch sizes. The dashed line connects the best available
choices (Performance Frontier). The left panel shows only this frontier compared to the previous strate-
gies: LTS-IPW extends the possibilities by approximating the TS strategy while also ensuring an unbiased
estimate. Number of simulations = 20,000.

The right panel of figure shows only the frontier for the LTS-IPW strategy, along with
our previous strategies. Limitation with inverse propensity weighting clearly extends the
possibilities of the decision-maker: It gets the closest to the TS strategy but also allows for
an unbiased estimate, and dominates TS-FB and also ETC for nB < 2000. If the decision-
maker cares about welfare as well, collecting data adaptively with some limitation and
estimating the treatment effect with inverse propensity weighting is the best strategy.

5 Monte Carlo Simulation

5.1 Uncertainty

Parametrization I investigate the behavior and performance of different strategies with
different levels of uncertainty (σ) holding the treatment effect constant at unit value, so
σ expresses the noise-to-signal ratio. As the important measure in this problem is the
relative effect size τ/σ, it does not matter which one is fixed. Fixing τ allows me to
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directly compare the welfare and estimation performance of the strategies. I investigate 8
different values for σ with n = 10, 00010. Each setup is simulated with 10 values of batch
size and 8 values of limit11, 10− 50 thousand runs for each12.

Welfare Figure 10 summarizes the results of the expected total welfare and the bias in
τ̂0 by batch size for each σ. Less uncertainty (smaller variation in the potential outcomes)
increases the expected gain and decreases the bias. Both of these results are intuitive.

Figure 10: Expected total welfare and bias
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Notes: The left panel shows the expected welfare achieved by the (unlimited) bandit rule with different
batch sizes (along the x axis) by different levels of noise (labelled). The dashed line highlights the maximum
welfare that each strategy could achieve, and the points depict the batch sizes with the maximum welfare
for a given σ. The right panel compares the bias in the standard treatment effect estimators. Larger noise
results in lower welfare and larger bias. Number of simulations = 10-50,000.

Unlike in the setup of the previous section (σ = 10), the quickest adaptivity results in the
highest expected welfare for low levels of noise (σ < 5). For these setups, the danger of
over-fitting is low, so regularizing by increasing the batch size does not help, only incurs
a higher opportunity cost.

There is another interesting pattern to note: For welfare, each line approaches the one
with the smallest σ as batch size increases, some also reach it. This means that less un-
certainty does not lead to higher outcome under a certain value of σ if batches are large

10σ ∈ {1, 2, 5, 10, 15, 20, 25, 30}
11As small batch sizes do not work with low limits, it means 63 parametrizations for each setup.
12The number of runs depends on the level of noise: for setups with larger noise I run more simulations

to get robust results: 10,000 for σ below 10, 20,000 for σ at least 10 but below 20 and 50,000 for larger values
of σ.
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enough. The reason for this is that for each batch size there is a maximum of outcome that
cannot be exceeded: when the positive treatment effect is learnt immediately in the first
batch and all subsequent batches are assigned to the treatment. It is possible if the noise
in the outcomes are small relative to the batch size. This maximum possible welfare is
depicted by the dashed line on the chart - if the standard deviation in potential outcomes
is not larger than the treatment effect, practically each batch size achieves this maximum.
Table A.1 in the Appendix contains the results for each scenario.

Estimation A similar pattern is visible in the bias (right panel) as well: if the noise is
sufficiently low and the batch size is large enough, there is no bias. Obviously, if the
treatment effect is perfectly learnt in the first batch, the asymmetric sampling that causes
the bias does not kick in. Figure 11 shows the average share of treated in the second batch
across batch sizes for each setup. It confirms that full learning in first batch can explain
the observed patterns in welfare and bias. Table A.2 and A.3 in the Appendix contain the
expected bias and MSE values for each scenario.

Figure 11: Average treated share in the second batch
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Notes: The figure shows the expected share of individuals assigned to the treatment in the second batch for
various batch sizes, under different noise levels. If the noise is small and the adaptivity is slow enough, full
learning occurs. These situations do not cause any bias, and they end up with the highest possible welfare
(see the left panel of Figure 10). Number of simulations = 10-50,000.

Welfare-Estimation Trade-off The previous results are in line with the main message of
this paper: welfare and estimation goals are working against each other. Mainly, quicker

23



adaptivity leads to higher outcome but also higher bias, for each level of σ. This obser-
vation works differently only for two special regions: (1) for high levels of noise, extreme
adaptivity hurts both goals, whereas (2) for low levels of noise, adaptivity can be in-
creased until a certain point gathering the welfare gain but without introducing any bias.

I suggested limiting as a working method for bias correction in section 4.3. I showed that
small amounts of limitation result in unbiased treatment effect estimates with highly im-
proved MSE for only a low price in achieved welfare, and this disproportionality allows
for the extension of the set of available choices for the decision-maker in the welfare-
estimation space.

Figure 12 shows the performance of the different strategies in the welfare-estimation
space for each setup. Similarly to Figure 7, it only shows the frontier for the TS-IPW
strategy that is formed by the best combinations of batch size and limit. Obviously, as the
problem gets harder (as the uncertainty grows), each strategy performs worse (are farther
away from the top right corner). My previous result is strengthened: adaptivity with lim-
itation almost always extends the feasible set of welfare-MSE pairs. For high noise, my
suggested strategy even extends upon the unlimited TS that were excluded because the
estimate is biased. Only in low-noise setups is this extension ambiguous. However, in
these setups the problem to solve is easy, and the whole question is of less importance.
The treatment effect can be learnt perfectly right in the first batch, so an unlimited bandit
could deliver an unbiased estimate next to near-optimal welfare (see Figure 10).
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Figure 12: Performance of different strategies in the welfare-estimation space
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Notes: Each panel is a replication of the left panel of Figure 9 for different levels of noise. The TS-IPW
strategy always extends the set of choices, especially if the problem is hard (the noise is large). Num-
ber of simulations = 10-50,000.
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In practice it is important to know which combinations form the frontier that extends
the possibilities. For welfare, it is obvious, that smaller limits are expected to fare better.
However, a small limit excludes small batch sizes as we need control assignees in every
batch to ensure unbiasedness. So, it is not straightforward how to choose the best strategy.
Figure 13 shows the expected welfare for all batch size - limit combinations, for different
levels of uncertainty. There are three interesting results to note:

Figure 13: Expected welfare of different combinations of nB and L
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Notes: Each panel shows the expected welfare relative to the best strategy for each batch size and limit
combinations, for different levels of noise. The best strategies are highlighted within each scenario. Num-
ber of simulations = 10-50,000.

1. Quicker adaptivity is generally better, but not beyond nB = 50. Too small batch
size requires too large limit to preserve unbiasedness that adversely affects welfare.
Also, the opportunity cost they could possibly win is no more than the size of the
batch which is obviously small for small batches.

2. One can increase limit and decrease batch size to achieve about the same welfare.
For large noise cases, many combinations result in the same level of welfare. Note,
however, that this level is smaller in absolute value than in low-noise scenarios (re-
call Figure 1).

3. Limiting does not eliminate the problem of over-fitting: too quick adaptivity has
a detrimental effect on expected welfare if the noise is high (e.g. for σ = 20 the
achieved welfare is smaller with nB = 10 than with nB = 50 even with larger limits).
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Figure 14 shows the same chart for the estimation goal, plotting the MSE of different
combinations. As in this case, the important comparison is the estimated treatment effect
itself, I use the levels of MSE: a value above 1 means an error that is larger than what is
measured.

1. Intuitively, larger noise means larger MSE, across each combinations.

2. Smaller adaptivity and larger limits improve MSE. More interestingly, limiting mat-
ters more than batch size: in terms of estimation precision, increasing the limit is
more effective than increasing the batch size.

3. The combination that results in the smallest MSE while still achieving the maximal
welfare is: {nB = 50, L = 2%} for σ = 1 while {nB = 200, L = 5%} for σ ≥ 5.

Figure 14: MSE of different combinations of nB and L
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Notes: Each panel shows the MSE of the inverse-propensity-weighted treatment effect estimator of the
limited bandit for each batch size and limit combinations, for different levels of noise. Recall, MSE above
the unit level means an error that is larger than what is measured. Number of simulations = 10-50,000.

To better understand the behavior of different strategies, it is worth considering the lim-
iting cases of uncertainty:

1. no-noise scenario σ → 0 For low-noise cases, smaller limits reach higher welfare
while the MSE remains stable, so as σ → 0 it is reasonable to L → 0. Also recall
that the standard treatment effect estimator on unlimited bandit data is unbiased
for sufficiently large batches (see Figure 10), where the sufficiently large batch size
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decreases in noise. Last, smaller batch size reaches higher welfare, and for low
noise levels we should not worry about over-fitting either. All of these suggest
that we should run an unlimited bandit with the smallest batch size (nB = 2) for
the no-noise scenario (the estimation method does not matter as σ = 0 ⇒ τ̂0 =

τ̂IPW). This strategy is equivalent to the intuitive solution of this problem: assign
one observation to both groups and then assign everyone based on the comparison
of these outcomes.

2. no-treatment-effect scenario σ→ ∞ For high-noise cases, high limits are needed to
keep MSE at moderate level. As noise increases, so decreases the achievable welfare
(see Figure 10) and expands the set of batch size and limit choices that result in about
the same welfare as the best combination. These suggest to use the maximum limit
of 0.5 for the limiting no-treatment-effect scenario which strategy is equivalent to
the simple random split. Again, this is an intuitive solution as zero treatment effect
means there is no potential welfare to gain from being adaptive so it would only
incur losses on the estimation goal.

Generally, we can conclude to following practical recommendations: choose the limit
based on the welfare-MSE trade-off and then use the smallest possible batch size. This
choice of the batch size gets less relevant as the noise increases.

5.2 Horizon

I also consider different lengths for the horizon13. Note that this is similar to changing
the noise and batch size appropriately: e.g. a 4 times larger sample size is equivalent
to a setup with 2 times larger σ with 4 times larger batches (e.g. holding the number of
batches fixed). Simulating the illustrative case (σ = 10) for different lengths makes the
comparison easier.

The right panel of Figure 15 validates the theoretical result, that the regret of Thompson
sampling with any batch size grows slower than the regret of the exploit-then-commit
(ETC) rule typical in the treatment choice literature.

The left panel of the chart focuses on the choice of batch size by different horizons. If the
horizon is shorter, smaller batch sizes are better: quicker adaptivity means less opportu-
nity cost at the beginning. Extreme adaptivity can still lead to over-fitting and thus, lower
welfare. As the horizon gets longer, larger batch sizes fare better. This result might be

13The simulated values are the followings: 2000, 10,000, 20,000, and 40,000.
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Figure 15: Welfare performance of bandit algorithm with various levels of adaptivity
across different horizons
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Notes: The left panel shows the expected regret of different strategies by the horizon: the regret of Thompson
sampling grows slower with n than for the explore-then-commit rule common in the econometric practice.
The right panel shows the expected welfare achieved by different strategies relative to the (infeasible) op-
timal welfare (treatment-only scenario). Longer horizons lessen the importance of the choice of batch size.
Number of simulations = 10,000.

explained by the fact that in the longer run, one has more time to invest in learning as
there will be more time to gather the interests. Note also, that for shorter horizon, smaller
batch size means the same number of batches. E.g. for n = 2000, the best batch size of
20 means 100 batches, the same, as the optimal batch size of 100 for the n = 10, 000 case.
The most allocation decisions should be made in the longest horizon setup (400 batches
deliver the best result for n = 40, 000). It is also worth noting, that the importance of the
batch size gets less important as the horizon grow: smaller batch sizes reach about the
same level of expected welfare.

Figure 16 depicts the performance of different strategies in the welfare-estimation space.
The limited IPWE strategy extends the available set of choices, especially if the horizon is
shorter. Note that decreasing the horizon is making the learning problem harder, similarly
to increasing the noise. Therefore, it is not surprising that the chart for the longest horizon
resemble more for the small noise setups of Figure 12. Table A.4, A.5 and A.6 in the
Appendix contain the expected welfare, bias and MSE values for each scenario.
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Figure 16: Performance of different strategies in the welfare-estimation space, for
different horizons
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Notes: Each panel is a replication of the left panel of Figure 9 for different horizons. LTS-IPW always extends
the set of possible choices, especially if the problem is hard (n is small). Number of simulations = 10,000.

5.3 Non-Gaussian Potential Outcomes

All the previous results were built on the Gaussian assumption for the potential out-
comes. In this subsection I show how relevant this assumption is by considering less
well-behaved distributions as well. I focus on two common behavior: fat tails and skew-
ness. I compare the behavior of the strategies by simulating untreated potential outcomes
by four distributions:
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1. Normal distribution
2. Student’s t-distribution with 4 degrees of freedom (fat tails)
3. χ2 distribution with 5 degrees of freedom (positive skewness)
4. negative χ2 distribution with 5 degrees of freedom (negative skewness)

All of the simulated outcomes are standardized to have µ0 = 0 and σ = 10 in the popula-
tion (as in the original setup, see Section 3.1) to allow for a strict comparison by the shape
of the distribution.

For the comparison I choose two strategies: Thompson sampling with the standard treat-
ment effect estimator (τ̂0) and the limited Thompson sampling with 5% limit using the
inverse-propensity-weighted estimator (τ̂IPW)14.

Figure 17 compares welfare performance of the strategies by distribution. The only dif-
ference can be detected in the TS strategy with quick adaptivity: the fat-tailed and the
negatively-skewed distribution fare worse (but this difference is relatively small). The
difference disappears with the limited strategy.

The expected welfare solely depends on each strategy’s ability to assign as much indi-
vidual to the best group (here: to the treatment) as possible. In adaptive allocation rules
this ability is determined by how the estimated means compare to each other. As the
assignment rule compares averages of the observed outcomes, for large enough sample
size the central limit theorem kicks in and this makes the underlying distribution less rel-
evant. In small sample cases, certain shapes of the underlying distribution makes the true
means harder to estimate: if it has fat tails or a negative skewness. Interestingly, positive
skewness seems to help.

Figure 18 shows the estimation performance of the same strategies using the standard
treatment effect estimator on the unlimited bandit data and the inverse-propensity-
weighted estimator on the limited bandit data. The general patterns are very similar
to that of welfare. Practically, one could detect differences only for the TS strategy with
small enough batch sizes. Fat-tailed and negatively skewed distributions of potential out-
comes are worse, a positively skewed distribution is better than the standard normal one.
However, all of these differences disappear when we apply limiting even if we want to
preserve adaptivity.

The result that fat tails make our problem harder is intuitive. The differential result in
skewness needs some explanation. As I discussed in Section 3.3, the bias originates from

14Note that I do not change the assignment mechanism, so the posterior beliefs about the group means
are still formed using normal distributions. This better approximates a real-world situation where the exact
distribution of the outcomes are not known.
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Figure 17: Welfare performance by different strategies compared by the distribution of
the potential outcome
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Notes: The figure shows the expected welfare of different strategies by batch size for each outcome distribu-
tion. TS: Thompson sampling, LTS-5%: limited Thompson sampling with 5% limit. There is no difference
in the expected welfare by the distribution of the potential outcomes for the LTS strategy. Number of sim-
ulations = 10,000.

the belief about the control mean getting stuck a very low region. For this to happen
we should draw from the low end of the distribution. If the distribution of the poten-
tial outcomes is such that drawing an observation negatively far from the mean has a
higher probability, our problem gets harder. Negative skewness means that the mode
is below the mean so the probability of drawing negative outliers is higher. In contrast,
positive skewness brings more positive outliers that – due to the asymmetric sampling
– only makes our problem easier. Obviously, if the treatment effect is negative, positive
skewness is better.
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Figure 18: Estimation performance by different strategies compared by the distribution
of the potential outcome
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Notes: The figure shows the expected bias and MSE of the estimator of different strategies by batch size for
each outcome distribution. TS: Thompson sampling using τ̂0, LTS-5%-IPW: limited Thompson sampling
with 5% limit using τ̂IPW . Number of simulations = 10,000.

6 Data-driven simulations

To assess the behavior of different strategies and the welfare-estimation trade-off in a
practical setting, I will ran data-driven Monte Carlo simulations using the well known
National Job Training Partnership Act (JTPA) study (Bloom et al. 1997). I take the experi-
mental sample that was used by the influential paper of Abadie et al. (2002). This sample
has been used many times for illustrative purposes in the treatment choice literature (see
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among others Kitagawa and Tetenov 2017). Participants of the JTPA study assigned to the
treatment group were offered job training. The outcome of interest it the earnings of the
participants in the next 30-months period.

Table 2 shows the main numbers of the experiment. The program seems to be effective.
The average earnings of the treatment group is $1,159 higher, even though only 64% of
them actually got the training. This shows a positive intention-to-treat effect (ITT), that
is my main interest here focusing on treatment assignment rules. The positive ITT more
than compensates for the actual cost of the treatment, resulting in a net intention-to-treat
effect of $674.

Table 2: Descriptive statistics of JTPA experiment

Assignment

Treatment Control All

Number of participants 7,487 3,717 11,204
Share of trainees 64.2% 1.5%
Mean outcome $16,200 $15,041 $15,815
ITT $1,159
Mean net outcome $15,703 $15,029 $15,480
net ITT $674

Notes: Mean outcome is calculated as the 30-month earnings
of the participants. Mean net outcome accounts for the oc-
casional cost of training ($774, borrowed from Bloom et al.
1997).

JTPA was a one-off experiment lasting for more than a year. For the sake of illustration,
I will assume participants could have arrived in batches to simulate how adaptive as-
signment rules would have behaved with the JTPA-participants. Considering that such
programs last over years this might be a relevant thought experiment: one can regard
batches as yearly participants of such programs where each year’s policy depends on
available observations until that point15.

For data-driven simulation, I relax the distributional assumption and the homogeneous
treatment effect assumption. Instead, I simulate potential outcomes by bootstrapping
from the available data. This way, I can simulate arbitrary assignments using the original
data - as a result, it will not be true any more that only the arrival is random: each sim-
ulation run will consist of a different population (bootstrapped from the same original

15In such setup, the independent and identically distributed arrival is a very strong assumption: unem-
ployed people in different years are likely to behave differently. Dimakopoulou et al. (2018) investigate the
estimation problem in the exploration-exploitation framework in settings where the outcome is heteroge-
nous by the arrival. They suggest a balancing method for contextual bandits to eliminate bias. In this paper
I maintain the IID assumption to focus on the bias that arises even without any heterogeneity.
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population). Besides this difference, the JTPA data could be translated to my setup by
scaling the number of individuals and the treatment effect (average net ITT) correspond-
ing to a scenario of σ = 13.716.

Figure 19 compares the performance of different strategies in the welfare-estimation
space. As in the actual study 67% of the participants was assigned to the treatment and
the net intention-to-treatment effect happened to be positive, the actual strategy fares
very well17. However, the adaptive rules can win an additional welfare of as much as
$1M while still providing an unbiased estimate (in exchange for higher variance in the
estimate). Furthermore, had the treatment effect happened to be negative, the actual
strategy would have suffered a huge loss whereas the adaptive strategy could adapt to
that scenario as well. Compared to a neutral 50-50% random split, the welfare gain of the
adaptive strategy is much bigger and a large share of it could be realized without much
loss on MSE.

The patterns of the figure are really similar to that of the σ = 15 case in Figure 12, only
the uncertainty seems to be larger (limiting beats the unlimited strategy in welfare). This
could result from the fact that the treatment effect is no longer constant and there is also
variability in the population due to the bootstrap.

16First scale the outcome to have µ0 = 0 and µ1 = 1. Then scale the standard deviation of this scaled
outcome by

√
10000/n.

17To assess the MSE of the actual assignment, I simulated a random split with a treatment share of 67%.
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Figure 19: Welfare-estimation trade-off for the JTPA experiment
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Notes: Each dot shows the achieved welfare and the mean squared error of the standard treatment effect
estimator for a given strategy. The shaded are shows the available choices for the limited bandit strategy
with inverse-propensity-weighted estimator for an appropriate batch size and limit. The dashed line con-
nects the best possible combinations (Performance Frontier). The LTS-IPW strategy extends the available
set of choices. Number of simulations = 10,000.

7 Concluding remarks

In our digital world, collecting data and base our decisions on them are getting techno-
logically feasible. Therefore, online experimentation is getting more and more popular.
In this paper, I dealt with this problem from a new perspective. Instead of focusing either
on welfare maximization or estimation, I take a more practical viewpoint by considering
both goals together. I borrow ideas from program evaluation and apply them on multi-
armed bandits to improve upon the established methods valued by both welfare and
estimation metrics.

Running a systematic Monte Carlo study, I highlight an important trade-off between wel-
fare and estimation: experimentation strategies that result in good estimators (such as
randomized controlled trial) suffer from huge opportunity cost, whereas the bandit algo-
rithm that optimizes for welfare leads to biased treatment effect estimate. Some straight-
forward strategies (e.g. explore-then-commit, bandit with estimation on randomized sub-
sample) form transitions between the two extremes, so they provide good choices for
decision-makers who have both welfare and estimation goals.

My contribution is threefold: First, I characterize the behavior of a well-known bandit
heuristic, the Thompson sampling, across different setups. The standard treatment effect
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estimator on adaptively collected data suffers from amplification bias, and this bias in-
creases in the relative size of the treatment effect and in the speed of adaptivity of the
algorithm (smaller batches). The traditional bias correction method of inverse propen-
sity weighting (IPW) does not work, it can even exacerbate the bias. Second, I highlight
the welfare-estimation trade-off for established solutions. Finally, I suggest an easy-to-
implement trick to correct the bias: limiting the adaptivity of the data collection by re-
quiring sampling from all arms. Using inverse propensity weighting on data that arise
from limited adaptivity results in an unbiased treatment effect estimate, whereas it pre-
serves almost all of the welfare gain stemming from adaptivity.

If you face an easy problem where the relative size of the treatment effect is large, quick
adaptivity along with small (or even no) limiting is the best choice to reach both high wel-
fare and a reasonable estimator. If the noise is larger, choosing a higher batch size (skip-
ping some decisions) is a better idea, as it could improve the expected outcome (similarly
to how regularization improves prediction accuracy if the noise is large). Limiting more
has small welfare cost while it can highly improve the precision of the estimator.

Running a bandit algorithm with limiting has a major advantage over the explore-then-
commit strategy. While the latter could beat the frontier defined by the best batch size and
limit combinations in certain setups, one should choose the sample for exploration opti-
mally to realize this result. However, this sample should be chosen in advance where we
do not know the relative treatment effect, nor the horizon. In contrast, when running an
adaptive experiment, one can change the batch size and limiting parameters throughout
the whole process, and adjust them according to the actual knowledge about the environ-
ment – without risking unbiasedness.

My simulation considered only a very simple setup. Real world scenarios often include
fat tail distributions, or much more than just one treatment. I stick to the simple setup
to concentrate on the basic mechanisms of adaptive data collection. The main result of
the welfare-estimation trade-off should hold for a much broader set of environments. I
suppose that regularization with higher limits and larger batch sizes gets more important
for fat tail distributions. However, this question should be answered by future research.

I expect that adaptive experiments are becoming more popular in every field, including
economics. Understanding its mechanisms is essential to be able to use this tool correctly.
This paper hopefully could contribute to this purpose.
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A Simulation distributions

This section presents the whole simulation distributions for expected welfare and various
estimators to complement the summary numbers in the main text.

Figure A.20: Distribution of welfare by batch size
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Notes: Each panel shows the distribution of the achieved welfare by the bandit algorithm with the corre-
sponding batch size (σ = 10). Quicker adaptivity (smaller batch size) leads to higher achievable welfare
but also higher variance.
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Figure A.21: Distribution of τ̂0 by batch size
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Notes: Each panel shows the distribution of the standard treatment effect estimate for the bandit algorithm
with the corresponding batch size (σ = 10). The dashed line shows the true treatment effect, while the solid
line corresponds to the expected value of the estimates. Quicker adaptivity (smaller batch size) leads to a
more volatile estimate with larger bias.
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Figure A.22: Distribution of τ̂IPW by batch size
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Notes: Each panel shows the distribution of the inverse-propensity-weigthed treatment effect estimate for
the bandit algorithm with the corresponding batch size (σ = 10). The dashed line shows the true treatment
effect, while the solid line corresponds to the expected value of the estimates. Quicker adaptivity (smaller
batch size) leads to larger bias. The variance is larger compared to τ̂0, especially for larger batch sizes.
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Figure A.23: Distribution of τ̂FB by batch size
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Notes: Each panel shows the distribution of the treatment effect estimate calculated on the first batch of the
bandit algorithm with the corresponding batch size (σ = 10). The dashed line shows the true treatment
effect, while the solid line corresponds to the expected value of the estimates. The estimator is unbiased but
really volatile, especially for smaller batch sizes.
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B Detailed simulation results

This section presents all the simulation results of expected welfare, expected bias and
expected welfare for the various strategies in different setups. The welfare-estimation
plots in the main text are based on these numbers.

Table A.1: Expected welfare for different strategies (n = 10, 000)

Batch size

allocation 10 20 50 100 200 500 1000 2000 5000 10,000

σ = 1
TS 9987 9985 9974 9950 9900 9750 9500 9000 7500 5000
ETC 9465 9847 9973 9950 9900 9750 9500 9000 7500 5000
LTS-0% 9851 9702 9455 8960 7475 5000
LTS-1% 9851 9802 9655 9410 8920 7450 5000
LTS-2% 9776 9752 9704 9560 9320 8840 7400 5000
LTS-5% 9490 9477 9455 9410 9275 9050 8600 7250 5000
LTS-10% 8995 8991 8980 8960 8920 8800 8600 8200 7000 5000
LTS-15% 8495 8493 8483 8465 8430 8325 8150 7800 6750 5000
LTS-20% 7996 7994 7985 7970 7940 7850 7700 7400 6500 5000

σ = 2
TS 9957 9957 9953 9940 9898 9750 9500 9000 7500 5000
ETC 7858 8663 9580 9892 9899 9750 9500 9000 7500 5000
LTS-0% 9850 9702 9455 8960 7475 5000
LTS-1% 9846 9801 9655 9410 8920 7450 5000
LTS-2% 9767 9748 9703 9560 9320 8840 7400 5000
LTS-5% 9479 9471 9452 9410 9275 9050 8600 7250 5000
LTS-10% 8986 8984 8976 8958 8920 8800 8600 8200 7000 5000
LTS-15% 8489 8487 8479 8464 8430 8325 8150 7800 6750 5000
LTS-20% 7991 7990 7983 7969 7940 7850 7700 7400 6500 5000

σ = 5
TS 9797 9800 9801 9798 9778 9691 9482 8998 7500 5000
ETC 6186 6710 7713 8412 9098 9615 9494 9000 7500 5000
LTS-0% 9750 9656 9442 8959 7475 5000
LTS-1% 9736 9714 9615 9399 8919 7450 5000
LTS-2% 9660 9656 9630 9527 9311 8839 7400 5000
LTS-5% 9395 9394 9386 9357 9252 9044 8600 7250 5000
LTS-10% 8922 8925 8921 8912 8883 8785 8597 8200 7000 5000
LTS-15% 8439 8442 8438 8429 8403 8315 8148 7800 6750 5000
LTS-20% 7954 7955 7951 7943 7920 7843 7699 7400 6500 5000

σ = 10
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Table A.1: Expected welfare for different strategies (n = 10, 000) (continued)

Batch size

allocation 10 20 50 100 200 500 1000 2000 5000 10,000

TS 9372 9382 9389 9392 9383 9321 9178 8820 7469 5000
ETC 5626 5840 6375 6946 7533 8496 9004 8896 7498 5000
LTS-0% 9371 9308 9163 8800 7451 5000
LTS-1% 9358 9351 9288 9140 8774 7430 5000
LTS-2% 9302 9309 9301 9234 9082 8713 7384 5000
LTS-5% 9096 9106 9111 9097 9026 8871 8508 7241 5000
LTS-10% 8694 8707 8713 8711 8695 8623 8476 8139 6995 5000
LTS-15% 8260 8278 8280 8276 8258 8193 8060 7758 6747 5000
LTS-20% 7819 7829 7829 7826 7809 7750 7634 7370 6498 5000

σ = 15
TS 8878 8873 8881 8896 8891 8828 8709 8400 7258 5000
ETC 5441 5615 5950 6285 6781 7594 8175 8429 7453 5000
LTS-0% 8884 8825 8703 8392 7250 5000
LTS-1% 8875 8871 8812 8691 8379 7238 5000
LTS-2% 8830 8849 8837 8779 8656 8343 7209 5000
LTS-5% 8678 8693 8708 8696 8638 8508 8199 7104 5000
LTS-10% 8356 8374 8386 8392 8377 8318 8196 7907 6900 5000
LTS-15% 7989 8014 8025 8030 8012 7955 7842 7579 6679 5000
LTS-20% 7609 7622 7629 7632 7616 7563 7464 7233 6450 5000

σ = 20
TS 8359 8353 8369 8386 8380 8331 8226 7957 6968 5000
ETC 5312 5445 5696 5983 6328 6969 7577 7936 7300 5000
LTS-0% 8375 8327 8223 7954 6965 5000
LTS-1% 8373 8368 8321 8216 7946 6958 5000
LTS-2% 8340 8351 8345 8299 8194 7924 6941 5000
LTS-5% 8222 8243 8253 8244 8193 8090 7824 6869 5000
LTS-10% 7964 7983 8005 8014 7997 7946 7847 7598 6714 5000
LTS-15% 7660 7699 7712 7713 7700 7649 7556 7328 6532 5000
LTS-20% 7340 7364 7377 7375 7364 7319 7235 7032 6334 5000

σ = 25
TS 7923 7936 7942 7945 7939 7901 7804 7578 6704 5000
ETC 5248 5373 5591 5804 6088 6632 7120 7531 7104 5000
LTS-0% 7935 7901 7802 7575 6702 5000
LTS-1% 7938 7930 7893 7797 7571 6699 5000
LTS-2% 7924 7922 7913 7878 7782 7556 6688 5000
LTS-5% 7829 7847 7856 7835 7797 7703 7483 6637 5000
LTS-10% 7603 7637 7653 7661 7646 7602 7507 7304 6516 5000
LTS-15% 7349 7401 7412 7413 7398 7355 7268 7080 6368 5000
LTS-20% 7084 7116 7130 7130 7115 7075 6994 6828 6200 5000
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Table A.1: Expected welfare for different strategies (n = 10, 000) (continued)

Batch size

allocation 10 20 50 100 200 500 1000 2000 5000 10,000

σ = 30
TS 7566 7551 7585 7585 7590 7548 7473 7245 6485 5000
ETC 5260 5302 5466 5664 5899 6337 6827 7159 6896 5000
LTS-0% 7577 7548 7471 7244 6484 5000
LTS-1% 7566 7574 7543 7468 7240 6481 5000
LTS-2% 7567 7554 7562 7530 7456 7230 6473 5000
LTS-5% 7520 7506 7497 7501 7464 7394 7172 6434 5000
LTS-10% 7316 7347 7357 7338 7345 7301 7231 7025 6337 5000
LTS-15% 7091 7140 7141 7130 7134 7096 7026 6839 6212 5000
LTS-20% 6871 6895 6901 6889 6894 6855 6790 6623 6067 5000

Notes: TS: Thompson sampling, ETC: Explore-then-commit, LTS-X%: Limited Thompson sampling with
X% limitation. Expected welfare is calculated as the average of the sum of outcomes (∑n

i=1 Y) across the
simulation runs. Number of simulations = 10, 000 for σ < 10, 20, 000 for 10 ≥ σ < 20 and 50, 000 for
σ ≥ 20.

Table A.2: Bias for different strategies (n = 10, 000)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

σ = 1
TS 0.127 0.072 0.009 0.001 0.000 0.000 0.000 0.000 0.000 0.000
TS-IPW 0.177 0.169 0.047 0.001 0.000 0.000 0.000 0.000 0.000 0.000
TS-FB 0.018 -0.003 0.003 0.001 0.002 0.000 -0.001 0.000 0.000 0.000
ETC 0.008 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
LTS-0.5% 0.002 0.000 0.001 0.000 -0.001 0.000
LTS-1% 0.001 0.000 0.000 -0.001 -0.001 0.001 0.000
LTS-2% 0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000 0.000
LTS-5% 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000
LTS-10% 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000
LTS-15% 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
LTS-20% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

σ = 2
TS 0.196 0.174 0.109 0.043 0.003 -0.002 -0.001 0.000 0.000 0.000
TS-IPW 0.219 0.231 0.244 0.195 0.055 -0.002 -0.001 0.000 0.000 0.000
TS-FB -0.002 -0.005 0.001 0.006 0.000 -0.002 -0.002 -0.001 0.000 0.000
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Table A.2: Bias for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

ETC 0.000 -0.003 0.003 0.001 -0.002 -0.002 -0.001 0.000 0.000 0.000
LTS-0.5% 0.003 0.003 0.002 -0.001 0.001 0.000
LTS-1% 0.000 0.000 0.002 -0.003 -0.001 0.002 0.000
LTS-2% 0.001 0.001 -0.001 0.000 -0.002 -0.001 0.000 0.000
LTS-5% -0.001 0.001 0.001 0.000 -0.001 -0.001 -0.001 0.000 0.000
LTS-10% -0.001 0.000 0.001 0.000 0.000 -0.001 -0.001 -0.001 0.000 0.000
LTS-15% -0.001 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000
LTS-20% 0.000 0.000 0.001 0.000 0.000 -0.001 0.000 -0.001 0.000 0.000

σ = 5
TS 0.313 0.302 0.260 0.213 0.148 0.052 0.013 0.003 0.001 0.001
TS-IPW 0.305 0.302 0.287 0.284 0.255 0.198 0.103 0.030 0.000 0.001
TS-FB -0.012 -0.010 0.022 -0.007 -0.003 0.004 0.002 0.003 0.000 0.001
ETC 0.009 0.009 0.007 0.000 0.004 0.006 0.004 0.003 0.001 0.001
LTS-0.5% 0.004 0.007 0.005 -0.005 -0.006 0.001
LTS-1% 0.003 0.007 0.000 0.000 -0.005 -0.007 0.001
LTS-2% 0.002 0.005 0.004 -0.005 -0.004 -0.002 -0.004 0.001
LTS-5% 0.000 0.004 0.001 0.001 -0.005 -0.002 0.001 -0.001 0.001
LTS-10% -0.001 0.003 0.001 0.001 0.000 -0.004 0.000 0.000 -0.001 0.001
LTS-15% 0.000 0.002 0.000 0.001 -0.001 -0.002 0.001 0.001 -0.001 0.001
LTS-20% 0.001 0.002 0.001 0.000 -0.001 -0.001 0.000 0.002 -0.001 0.001

σ = 10
TS 0.419 0.394 0.383 0.342 0.279 0.182 0.099 0.035 0.003 0.002
TS-IPW 0.375 0.337 0.306 0.261 0.190 0.140 0.115 0.100 -0.007 0.002
TS-FB -0.041 -0.043 0.008 0.030 -0.015 0.003 0.004 0.001 -0.001 0.002
ETC -0.066 -0.023 0.002 0.007 -0.004 0.003 0.003 0.001 0.000 0.002
LTS-0.5% -0.006 -0.001 -0.004 -0.010 0.001 0.002
LTS-1% -0.010 -0.003 -0.001 -0.001 -0.005 -0.003 0.002
LTS-2% -0.010 -0.002 -0.008 0.001 -0.005 -0.006 -0.007 0.002
LTS-5% -0.004 -0.006 -0.003 0.003 -0.001 -0.005 0.003 -0.005 0.002
LTS-10% -0.005 -0.004 -0.003 0.002 -0.001 -0.004 -0.001 0.002 -0.004 0.002
LTS-15% -0.004 -0.005 0.000 0.001 0.001 -0.002 0.000 0.001 -0.003 0.002
LTS-20% -0.002 -0.004 0.000 0.001 0.001 -0.001 -0.001 0.001 -0.002 0.002

σ = 15
TS 0.516 0.509 0.462 0.424 0.376 0.267 0.184 0.092 0.017 0.002
TS-IPW 0.443 0.404 0.315 0.246 0.182 0.096 0.060 0.035 0.046 0.002
TS-FB 0.033 0.085 0.009 -0.019 0.029 -0.008 0.003 -0.002 0.000 0.002
ETC 0.045 0.067 0.015 -0.019 0.018 0.001 -0.001 0.001 0.002 0.002
LTS-0.5% 0.002 -0.002 0.005 0.008 0.007 0.002
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Table A.2: Bias for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

LTS-1% 0.011 0.002 0.002 0.008 0.010 0.004 0.002
LTS-2% -0.001 0.007 0.005 0.004 0.005 0.008 0.003 0.002
LTS-5% 0.003 -0.003 0.005 0.001 0.010 0.005 0.004 -0.001 0.002
LTS-10% 0.003 -0.001 -0.001 0.000 -0.001 0.008 0.001 0.002 -0.001 0.002
LTS-15% 0.001 -0.001 -0.002 -0.001 -0.002 0.005 0.002 0.003 0.001 0.002
LTS-20% -0.001 0.002 -0.002 0.003 -0.002 0.003 0.001 0.000 0.000 0.002

σ = 20
TS 0.541 0.545 0.507 0.478 0.421 0.322 0.226 0.131 0.025 -0.003
TS-IPW 0.437 0.401 0.305 0.220 0.156 0.082 0.039 0.029 0.023 -0.003
TS-FB -0.040 0.009 -0.015 0.011 -0.020 -0.013 0.005 0.003 -0.002 -0.003
ETC -0.027 -0.008 -0.012 0.003 -0.016 -0.010 0.000 -0.002 -0.004 -0.003
LTS-0.5% 0.002 -0.002 -0.003 0.005 0.000 -0.003
LTS-1% -0.002 0.003 -0.001 -0.003 0.005 0.000 -0.003
LTS-2% 0.001 -0.002 0.001 0.005 -0.002 0.006 0.003 -0.003
LTS-5% 0.004 0.003 0.000 0.002 0.002 0.001 0.003 0.002 -0.003
LTS-10% -0.005 0.000 0.002 0.002 -0.001 0.003 0.000 0.001 0.002 -0.003
LTS-15% -0.005 0.001 0.002 0.000 0.000 0.001 0.001 0.001 0.002 -0.003
LTS-20% -0.004 -0.001 0.000 -0.001 -0.001 -0.001 0.000 0.001 0.002 -0.003

σ = 25
TS 0.603 0.588 0.558 0.511 0.463 0.358 0.260 0.159 0.036 0.006
TS-IPW 0.484 0.409 0.314 0.217 0.131 0.061 0.027 0.018 -0.006 0.006
TS-FB 0.002 0.025 0.032 0.019 0.007 0.005 -0.003 0.007 -0.004 0.006
ETC -0.048 0.049 -0.001 0.000 -0.003 0.001 0.006 0.007 0.000 0.006
LTS-0.5% 0.003 0.003 -0.006 -0.009 -0.004 0.006
LTS-1% 0.003 -0.001 -0.001 -0.004 -0.009 -0.007 0.006
LTS-2% 0.010 0.003 -0.001 0.001 -0.003 -0.008 -0.002 0.006
LTS-5% 0.001 0.007 0.003 0.002 0.001 -0.004 -0.003 -0.004 0.006
LTS-10% -0.002 0.003 0.000 0.004 0.002 0.000 -0.002 -0.001 -0.003 0.006
LTS-15% 0.000 0.003 0.005 0.004 0.001 0.002 -0.002 0.001 -0.002 0.006
LTS-20% 0.002 0.000 0.005 0.004 0.002 0.002 -0.002 0.003 -0.003 0.006

σ = 30
TS 0.628 0.591 0.583 0.527 0.477 0.386 0.287 0.176 0.039 -0.002
TS-IPW 0.498 0.401 0.312 0.197 0.117 0.061 0.039 0.021 -0.012 -0.002
TS-FB -0.069 -0.018 0.016 0.030 0.000 -0.014 0.013 -0.008 -0.001 -0.002
ETC 0.109 0.011 -0.032 -0.002 0.020 0.001 0.010 -0.002 -0.002 -0.002
LTS-0.5% 0.000 0.004 0.002 0.001 -0.011 -0.002
LTS-1% 0.003 -0.003 0.007 0.002 0.000 -0.010 -0.002
LTS-2% 0.002 -0.007 -0.005 0.002 -0.002 -0.003 -0.008 -0.002
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Table A.2: Bias for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

LTS-5% 0.014 0.000 -0.004 -0.005 0.002 -0.005 0.000 -0.005 -0.002
LTS-10% 0.010 0.005 0.002 -0.007 0.001 -0.003 -0.001 0.001 -0.003 -0.002
LTS-15% 0.008 0.007 0.000 -0.006 -0.003 -0.002 -0.001 0.001 -0.002 -0.002
LTS-20% 0.006 0.007 0.000 -0.006 0.000 -0.001 -0.003 0.002 -0.002 -0.002

Notes: TS: Thompson sampling with τ̂0, TS-IPW: Thompson sampling with τ̂IPW , TS-FB: Thompson
sampling with τ̂FB, ETC: Explore-then-commit with τ̂0, LTS-X%: Limited Thompson sampling with
X% limitation and τ̂IPW . Bias is calculated as the average difference between the estimate and the
true treatment effect across the simulation runs. Number of simulations = 10, 000 for σ < 10, 20, 000
for 10 ≥ σ < 20 and 50, 000 for σ ≥ 20.

Table A.3: MSE for different strategies (n = 10, 000)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

σ = 1
TS 0.118 0.068 0.036 0.020 0.010 0.004 0.002 0.001 0.001 0.000
TS-IPW 0.185 0.154 0.062 0.022 0.010 0.004 0.002 0.001 0.001 0.000
TS-FB 0.400 0.198 0.081 0.040 0.021 0.008 0.004 0.002 0.001 0.000
ETC 0.201 0.099 0.040 0.020 0.010 0.004 0.002 0.001 0.001 0.000
LTS-0.5% 0.019 0.020 0.018 0.016 0.010 0.000
LTS-1% 0.010 0.010 0.010 0.009 0.008 0.005 0.000
LTS-2% 0.005 0.005 0.005 0.005 0.005 0.004 0.003 0.000
LTS-5% 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.000
LTS-10% 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
LTS-15% 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
LTS-20% 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

σ = 2
TS 0.248 0.192 0.104 0.059 0.037 0.017 0.009 0.004 0.002 0.002
TS-IPW 0.319 0.346 0.384 0.379 0.201 0.027 0.009 0.004 0.002 0.002
TS-FB 1.576 0.807 0.323 0.160 0.081 0.032 0.016 0.008 0.003 0.002
ETC 0.793 0.411 0.162 0.082 0.040 0.017 0.009 0.004 0.002 0.002
LTS-0.5% 0.079 0.081 0.073 0.065 0.040 0.002
LTS-1% 0.039 0.040 0.039 0.036 0.032 0.021 0.002
LTS-2% 0.020 0.020 0.020 0.020 0.018 0.016 0.011 0.002
LTS-5% 0.008 0.009 0.008 0.009 0.008 0.008 0.007 0.005 0.002
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Table A.3: MSE for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

LTS-10% 0.004 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.002
LTS-15% 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002
LTS-20% 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002

σ = 5
TS 0.637 0.548 0.388 0.259 0.159 0.076 0.049 0.028 0.013 0.010
TS-IPW 0.701 0.731 0.762 0.902 1.208 1.821 1.697 0.546 0.016 0.010
TS-FB 9.965 4.994 1.994 0.989 0.515 0.197 0.101 0.051 0.020 0.010
ETC 5.109 2.567 1.019 0.507 0.261 0.104 0.055 0.028 0.013 0.010
LTS-0.5% 0.407 0.454 0.427 0.400 0.254 0.010
LTS-1% 0.224 0.221 0.227 0.223 0.204 0.130 0.010
LTS-2% 0.115 0.119 0.119 0.118 0.112 0.106 0.068 0.010
LTS-5% 0.050 0.052 0.051 0.051 0.050 0.048 0.045 0.031 0.010
LTS-10% 0.027 0.028 0.027 0.027 0.027 0.027 0.026 0.024 0.019 0.010
LTS-15% 0.021 0.020 0.020 0.019 0.019 0.019 0.019 0.018 0.015 0.010
LTS-20% 0.015 0.016 0.015 0.015 0.016 0.015 0.015 0.015 0.013 0.010

σ = 10
TS 1.355 1.072 0.887 0.656 0.440 0.238 0.141 0.088 0.052 0.040
TS-IPW 1.461 1.294 1.384 1.515 1.722 2.508 3.616 4.936 3.608 0.040
TS-FB 39.354 19.621 8.090 4.034 1.988 0.802 0.401 0.202 0.080 0.040
ETC 19.620 9.940 4.059 2.010 1.001 0.407 0.210 0.111 0.053 0.040
LTS-0.5% 0.989 1.047 1.129 1.199 0.929 0.040
LTS-1% 0.628 0.624 0.646 0.661 0.673 0.492 0.040
LTS-2% 0.380 0.380 0.373 0.382 0.384 0.364 0.268 0.040
LTS-5% 0.186 0.191 0.183 0.182 0.183 0.175 0.166 0.123 0.040
LTS-10% 0.105 0.106 0.105 0.105 0.103 0.100 0.099 0.095 0.075 0.040
LTS-15% 0.083 0.075 0.076 0.077 0.075 0.073 0.073 0.070 0.059 0.040
LTS-20% 0.062 0.061 0.061 0.062 0.060 0.059 0.060 0.058 0.051 0.040

σ = 15
TS 2.571 2.109 1.566 1.173 0.842 0.477 0.292 0.178 0.109 0.091
TS-IPW 2.666 2.407 2.188 2.220 2.376 2.788 3.776 5.158 5.206 0.091
TS-FB 90.993 44.865 17.786 8.885 4.576 1.777 0.900 0.452 0.181 0.091
ETC 45.523 22.524 8.949 4.504 2.271 0.916 0.480 0.253 0.121 0.091
LTS-0.5% 1.484 1.486 1.520 1.625 1.294 0.091
LTS-1% 1.053 1.028 1.011 1.021 1.027 0.796 0.091
LTS-2% 0.684 0.676 0.674 0.661 0.656 0.645 0.483 0.091
LTS-5% 0.373 0.373 0.366 0.366 0.359 0.345 0.334 0.253 0.091
LTS-10% 0.226 0.222 0.224 0.221 0.221 0.219 0.209 0.203 0.163 0.091
LTS-15% 0.180 0.165 0.166 0.164 0.163 0.164 0.158 0.154 0.131 0.091
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Table A.3: MSE for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

LTS-20% 0.137 0.136 0.137 0.135 0.134 0.136 0.130 0.129 0.115 0.091

σ = 20
TS 4.045 3.241 2.359 1.846 1.301 0.791 0.490 0.312 0.191 0.160
TS-IPW 4.121 3.481 3.039 2.952 2.943 3.234 3.647 4.817 4.828 0.160
TS-FB 160.604 79.991 31.699 15.892 7.963 3.204 1.585 0.812 0.321 0.160
ETC 79.498 39.556 15.826 7.942 4.007 1.641 0.835 0.446 0.215 0.160
LTS-0.5% 1.943 1.844 1.821 1.873 1.480 0.160
LTS-1% 1.463 1.384 1.337 1.317 1.310 0.991 0.160
LTS-2% 1.016 0.992 0.972 0.946 0.912 0.885 0.666 0.160
LTS-5% 0.596 0.587 0.573 0.573 0.556 0.539 0.513 0.394 0.160
LTS-10% 0.375 0.373 0.367 0.370 0.371 0.358 0.351 0.333 0.275 0.160
LTS-15% 0.307 0.284 0.286 0.282 0.284 0.277 0.271 0.262 0.227 0.160
LTS-20% 0.238 0.237 0.236 0.238 0.236 0.230 0.228 0.221 0.201 0.160

σ = 25
TS 5.833 4.810 3.600 2.714 1.956 1.181 0.757 0.486 0.299 0.249
TS-IPW 5.831 5.002 4.337 4.033 3.712 3.741 4.020 4.813 4.535 0.249
TS-FB 251.082 124.151 49.360 24.801 12.551 5.030 2.480 1.239 0.497 0.249
ETC 124.807 62.439 24.887 12.560 6.382 2.570 1.310 0.689 0.335 0.249
LTS-0.5% 2.490 2.297 2.154 2.144 1.604 0.249
LTS-1% 1.927 1.804 1.713 1.636 1.552 1.172 0.249
LTS-2% 1.397 1.340 1.300 1.251 1.201 1.109 0.843 0.249
LTS-5% 0.840 0.824 0.806 0.811 0.785 0.754 0.701 0.543 0.249
LTS-10% 0.563 0.548 0.544 0.543 0.544 0.527 0.512 0.484 0.401 0.249
LTS-15% 0.466 0.425 0.429 0.425 0.429 0.420 0.409 0.393 0.341 0.249
LTS-20% 0.362 0.359 0.361 0.360 0.361 0.358 0.351 0.339 0.305 0.249

σ = 30
TS 9.055 7.077 5.094 3.642 2.670 1.693 1.085 0.701 0.432 0.363
TS-IPW 9.056 7.285 6.168 4.952 4.528 4.539 4.597 5.099 4.519 0.363
TS-FB 364.392 178.634 72.500 35.187 18.079 7.213 3.605 1.810 0.723 0.363
ETC 180.242 89.158 35.970 18.149 9.123 3.720 1.891 1.001 0.480 0.363
LTS-0.5% 3.065 2.808 2.590 2.392 1.862 0.363
LTS-1% 2.493 2.289 2.151 2.018 1.845 1.395 0.363
LTS-2% 1.835 1.748 1.693 1.622 1.528 1.393 1.051 0.363
LTS-5% 1.145 1.114 1.081 1.059 1.060 1.007 0.920 0.727 0.363
LTS-10% 0.772 0.765 0.755 0.743 0.751 0.731 0.705 0.660 0.561 0.363
LTS-15% 0.646 0.604 0.604 0.602 0.606 0.587 0.573 0.548 0.487 0.363
LTS-20% 0.516 0.515 0.513 0.513 0.518 0.504 0.494 0.479 0.441 0.363
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Table A.3: MSE for different strategies (n = 10, 000) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

Notes: TS: Thompson sampling with τ̂0, TS-IPW: Thompson sampling with τ̂IPW , TS-FB: Thompson
sampling with τ̂FB, ETC: Explore-then-commit with τ̂0, LTS-X%: Limited Thompson sampling with
X% limitation and τ̂IPW . MSE is calculated as the average of the squared errors in the treatment
effect estimate across the simulation runs. Number of simulations = 10, 000 for σ < 10, 20, 000 for
10 ≥ σ < 20 and 50, 000 for σ ≥ 20.

Table A.4: Expected welfare for different strategies (σ = 10)

Batch size

allocation 10 20 50 100 200 500 1000 2000 5000 10,000

n = 2000
TS 1631 1640 1638 1627 1605 1526 1367 1000
ETC 1120 1196 1268 1363 1469 1550 1442 1000
LTS-0.5% 1604 1525 1367 1000
LTS-1% 1625 1603 1524 1366 1000
LTS-2% 1630 1621 1599 1521 1363 1000
LTS-5% 1612 1609 1602 1581 1504 1351 1000
LTS-10% 1558 1566 1565 1557 1536 1466 1323 1000
LTS-15% 1502 1510 1510 1503 1483 1419 1290 1000
LTS-20% 1444 1449 1447 1442 1424 1367 1253 1000

n = 10000
TS 9372 9382 9389 9392 9383 9321 9178 8820 7469 5000
ETC 5626 5840 6375 6946 7533 8496 9004 8896 7498 5000
LTS-0.5% 9371 9308 9163 8800 7451 5000
LTS-1% 9358 9351 9288 9140 8774 7430 5000
LTS-2% 9302 9309 9301 9234 9082 8713 7384 5000
LTS-5% 9096 9106 9111 9097 9026 8871 8508 7241 5000
LTS-10% 8694 8707 8713 8711 8695 8623 8476 8139 6995 5000
LTS-15% 8260 8278 8280 8276 8258 8193 8060 7758 6747 5000
LTS-20% 7819 7829 7829 7826 7809 7750 7634 7370 6498 5000

n = 20000
TS 19,268 19,272 19,288 19,298 19,292 19,243 19,119 18,791 17,465 14,998
ETC 11,181 11,714 12,871 13,743 15,346 17,252 18,468 18,757 17,496 15,000
LTS-0.5% 19,258 19,210 19,079 18,737 17,399 14,949
LTS-1% 19,202 19,204 19,153 19,017 18,666 17,329 14,899
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Table A.4: Expected welfare for different strategies (σ = 10) (continued)

Batch size

allocation 10 20 50 100 200 500 1000 2000 5000 10,000

LTS-2% 19,063 19,075 19,072 19,014 18,869 18,510 17,183 14,800
LTS-5% 18,583 18,597 18,598 18,588 18,520 18,368 18,009 16,740 14,500
LTS-10% 17,692 17,702 17,712 17,706 17,692 17,622 17,477 17,141 15,995 14,000
LTS-15% 16,765 16,779 16,781 16,773 16,758 16,692 16,561 16,259 15,247 13,500
LTS-20% 15,819 15,827 15,832 15,822 15,810 15,750 15,635 15,371 14,498 13,000

n = 40000
TS 39,152 39,167 39,182 39,210 39,197 39,166 39,058 38,757 37,460 34,998
ETC 22,203 23,374 25,845 28,008 30,444 34,583 37,421 38,571 37,486 35,000
LTS-0.5% 39,104 39,072 38,954 38,625 37,297 34,849
LTS-1% 38,977 38,972 38,932 38,803 38,460 37,127 34,700
LTS-2% 38,655 38,672 38,660 38,607 38,464 38,108 36,782 34,400
LTS-5% 37,582 37,598 37,608 37,586 37,518 37,366 37,008 35,739 33,500
LTS-10% 35,690 35,704 35,715 35,712 35,691 35,619 35,474 35,141 33,994 32,000
LTS-15% 33,763 33,779 33,782 33,776 33,757 33,690 33,559 33,260 32,246 30,500
LTS-20% 31,821 31,829 31,832 31,825 31,807 31,747 31,633 31,372 30,498 29,000

Notes: TS: Thompson sampling, ETC: Explore-then-commit, LTS-X%: Limited Thompson sampling with
X% limitation. Expected welfare is calculated as the average of the sum of outcomes (∑n

i=1 Y) across the
simulation runs. Number of simulations = 20, 000 for n = 10, 000, and 10, 000 otherwise.

Table A.5: Bias for different strategies (σ = 10)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

n = 2000
TS 0.527 0.514 0.427 0.347 0.253 0.111 0.033 0.002
TS-IPW 0.429 0.370 0.242 0.164 0.092 0.025 0.019 0.002
TS-FB -0.001 0.076 0.001 0.022 0.002 0.001 0.002 0.002
ETC 0.010 0.065 0.001 0.025 0.013 0.003 0.003 0.002
LTS-0.5% -0.003 -0.008 0.002 0.002
LTS-1% -0.008 -0.005 -0.006 -0.002 0.002
LTS-2% -0.001 -0.003 0.006 -0.008 0.007 0.002
LTS-5% 0.008 -0.003 -0.001 0.000 -0.011 -0.001 0.002
LTS-10% -0.001 0.007 -0.002 -0.004 0.000 0.000 -0.002 0.002
LTS-15% 0.000 0.007 -0.005 -0.002 0.001 0.002 -0.003 0.002
LTS-20% 0.005 0.007 -0.006 0.002 -0.001 0.003 -0.001 0.002
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Table A.5: Bias for different strategies (σ = 10) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

n = 10000
TS 0.419 0.394 0.383 0.342 0.279 0.182 0.099 0.035 0.003 0.002
TS-IPW 0.375 0.337 0.306 0.261 0.190 0.140 0.115 0.100 -0.007 0.002
TS-FB -0.041 -0.043 0.008 0.030 -0.015 0.003 0.004 0.001 -0.001 0.002
ETC -0.066 -0.023 0.002 0.007 -0.004 0.003 0.003 0.001 0.000 0.002
LTS-0.5% -0.006 -0.001 -0.004 -0.010 0.001 0.002
LTS-1% -0.010 -0.003 -0.001 -0.001 -0.005 -0.003 0.002
LTS-2% -0.010 -0.002 -0.008 0.001 -0.005 -0.006 -0.007 0.002
LTS-5% -0.004 -0.006 -0.003 0.003 -0.001 -0.005 0.003 -0.005 0.002
LTS-10% -0.005 -0.004 -0.003 0.002 -0.001 -0.004 -0.001 0.002 -0.004 0.002
LTS-15% -0.004 -0.005 0.000 0.001 0.001 -0.002 0.000 0.001 -0.003 0.002
LTS-20% -0.002 -0.004 0.000 0.001 0.001 -0.001 -0.001 0.001 -0.002 0.002

n = 20000
TS 0.378 0.368 0.343 0.312 0.267 0.184 0.108 0.041 0.005 0.001
TS-IPW 0.352 0.341 0.310 0.271 0.207 0.192 0.163 0.135 0.078 0.009
TS-FB -0.047 0.027 0.015 -0.032 0.022 -0.006 0.001 0.003 0.002 0.001
ETC 0.000 0.023 -0.004 -0.008 0.014 -0.004 0.000 0.001 0.002 0.001
LTS-0.5% -0.010 0.000 -0.010 -0.009 0.009 0.009
LTS-1% -0.003 -0.003 -0.002 -0.004 -0.005 0.012 0.007
LTS-2% -0.005 -0.003 0.001 0.005 0.000 -0.001 0.010 0.001
LTS-5% 0.002 -0.003 -0.002 0.000 0.005 0.000 0.000 0.000 0.000
LTS-10% 0.001 0.002 -0.003 -0.001 0.002 0.001 0.001 -0.001 -0.001 0.001
LTS-15% 0.001 0.001 -0.004 -0.002 0.001 0.001 -0.001 0.000 -0.002 0.001
LTS-20% 0.000 -0.001 -0.001 0.001 0.001 0.002 -0.002 -0.002 0.000 0.000

n = 40000
TS 0.305 0.306 0.300 0.289 0.251 0.189 0.117 0.047 0.002 0.000
TS-IPW 0.291 0.294 0.281 0.285 0.265 0.228 0.205 0.201 0.069 0.011
TS-FB -0.078 -0.027 0.047 0.036 0.005 0.000 0.003 0.003 -0.005 0.001
ETC -0.001 -0.005 0.061 0.025 0.010 0.001 -0.001 0.000 -0.002 0.000
LTS-0.5% 0.003 0.003 0.006 0.000 0.002 -0.001
LTS-1% 0.000 0.002 0.001 0.007 -0.003 0.005 0.002
LTS-2% 0.000 0.001 0.001 0.002 0.001 -0.001 -0.002 -0.001
LTS-5% 0.001 0.000 0.004 0.003 0.000 0.001 0.000 -0.003 -0.001
LTS-10% -0.001 0.000 0.003 0.002 0.003 0.001 0.001 -0.002 -0.002 0.000
LTS-15% -0.001 0.000 0.002 0.001 0.001 0.001 0.000 -0.002 -0.002 0.001
LTS-20% -0.001 0.000 0.003 0.002 0.001 0.000 -0.001 -0.002 -0.002 0.001
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Table A.5: Bias for different strategies (σ = 10) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

Notes: TS: Thompson sampling with τ̂0, TS-IPW: Thompson sampling with τ̂IPW , TS-FB: Thompson
sampling with τ̂FB, ETC: Explore-then-commit with τ̂0, LTS-X%: Limited Thompson sampling with
X% limitation and τ̂IPW . Bias is calculated as the average difference between the estimate and the
true treatment effect across the simulation runs. Number of simulations = 20, 000 for n = 10, 000, and
10, 000 otherwise.

Table A.6: MSE for different strategies (σ = 10)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

n = 2000
TS 3.045 2.203 1.399 0.992 0.616 0.343 0.243 0.200
TS-IPW 3.210 2.629 2.303 2.401 2.464 2.604 2.227 0.200
TS-FB 40.238 19.600 7.975 4.059 1.995 0.789 0.409 0.200
ETC 20.402 10.048 4.107 2.064 1.047 0.462 0.271 0.200
LTS-0.5% 2.147 1.994 1.560 0.200
LTS-1% 1.620 1.509 1.375 1.087 0.200
LTS-2% 1.176 1.120 1.089 0.943 0.769 0.200
LTS-5% 0.703 0.688 0.681 0.651 0.566 0.471 0.200
LTS-10% 0.440 0.451 0.443 0.444 0.432 0.386 0.335 0.200
LTS-15% 0.365 0.348 0.345 0.352 0.338 0.308 0.279 0.200
LTS-20% 0.289 0.297 0.290 0.298 0.284 0.267 0.253 0.200

n = 10000
TS 1.355 1.072 0.887 0.656 0.440 0.238 0.141 0.088 0.052 0.040
TS-IPW 1.461 1.294 1.384 1.515 1.722 2.508 3.616 4.936 3.608 0.040
TS-FB 39.354 19.621 8.090 4.034 1.988 0.802 0.401 0.202 0.080 0.040
ETC 19.620 9.940 4.059 2.010 1.001 0.407 0.210 0.111 0.053 0.040
LTS-0.5% 0.989 1.047 1.129 1.199 0.929 0.040
LTS-1% 0.628 0.624 0.646 0.661 0.673 0.492 0.040
LTS-2% 0.380 0.380 0.373 0.382 0.384 0.364 0.268 0.040
LTS-5% 0.186 0.191 0.183 0.182 0.183 0.175 0.166 0.123 0.040
LTS-10% 0.105 0.106 0.105 0.105 0.103 0.100 0.099 0.095 0.075 0.040
LTS-15% 0.083 0.075 0.076 0.077 0.075 0.073 0.073 0.070 0.059 0.040
LTS-20% 0.062 0.061 0.061 0.062 0.060 0.059 0.060 0.058 0.051 0.040

n = 20000
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Table A.6: MSE for different strategies (σ = 10) (continued)

Batch size

strategy 10 20 50 100 200 500 1000 2000 5000 10000

TS 1.102 1.007 0.721 0.565 0.409 0.230 0.132 0.079 0.043 0.027
TS-IPW 1.187 1.178 1.080 1.181 1.374 2.142 3.360 5.423 4.824 1.119
TS-FB 40.125 20.155 7.858 3.982 1.955 0.795 0.394 0.200 0.078 0.039
ETC 20.110 9.920 3.951 2.013 0.986 0.407 0.205 0.104 0.045 0.027
LTS-0.5% 0.630 0.668 0.685 0.759 0.735 0.526
LTS-1% 0.383 0.368 0.388 0.394 0.425 0.378 0.266
LTS-2% 0.216 0.217 0.216 0.216 0.222 0.220 0.194 0.140
LTS-5% 0.098 0.101 0.100 0.098 0.098 0.095 0.095 0.085 0.065
LTS-10% 0.053 0.053 0.054 0.055 0.054 0.053 0.052 0.052 0.047 0.038
LTS-15% 0.042 0.038 0.039 0.038 0.037 0.037 0.037 0.037 0.035 0.030
LTS-20% 0.031 0.030 0.031 0.031 0.030 0.030 0.030 0.030 0.029 0.026

n = 40000
TS 0.709 0.704 0.570 0.496 0.372 0.222 0.129 0.076 0.040 0.023
TS-IPW 0.762 0.821 0.806 0.996 1.164 1.754 2.879 4.926 5.361 1.328
TS-FB 40.465 19.838 7.935 3.991 2.001 0.806 0.397 0.202 0.080 0.040
ETC 19.978 10.142 4.042 2.023 0.983 0.405 0.208 0.104 0.043 0.023
LTS-0.5% 0.376 0.402 0.400 0.413 0.432 0.383
LTS-1% 0.214 0.217 0.219 0.215 0.218 0.221 0.189
LTS-2% 0.117 0.120 0.118 0.115 0.118 0.115 0.112 0.099
LTS-5% 0.050 0.053 0.051 0.051 0.051 0.050 0.049 0.047 0.042
LTS-10% 0.027 0.027 0.028 0.028 0.028 0.028 0.027 0.027 0.025 0.023
LTS-15% 0.022 0.019 0.020 0.020 0.020 0.020 0.020 0.019 0.018 0.017
LTS-20% 0.016 0.015 0.016 0.016 0.016 0.016 0.016 0.015 0.015 0.014

Notes: TS: Thompson sampling with τ̂0, TS-IPW: Thompson sampling with τ̂IPW , TS-FB: Thomp-
son sampling with τ̂FB, ETC: Explore-then-commit with τ̂0, LTS-X%: Limited Thompson sam-
pling with X% limitation and τ̂IPW . MSE is calculated as the average of the squared errors in
the treatment effect estimate across the simulation runs. Number of simulations = 20, 000 for
n = 10, 000, and 10, 000 otherwise.
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